帳號:guest(3.15.29.101)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李倫銘
作者(英文):Lun-Ming Lee
論文名稱:成長於二硫化鉬表面之單一元素導電二維材料鍺烯與錫烯及其元件之應用
論文名稱(英文):Elemental Conducting Two-Dimensional Germanene and Stanene Grown on Molybdenum Disulfides for Device Applications
指導教授:林時彥
陳怡嘉
指導教授(英文):Shih-Yen Lin
Yi-Jia Chen
口試委員:呂宥蓉
林時彥
陳怡嘉
口試委員(英文):Yu-Jung Lu
Shih-Yen Lin
Yi-Jia Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:69922026
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:80
關鍵詞:二維材料二硫化鉬鍺烯錫烯
關鍵詞(英文):2D MaterialsMolybdenum Disulfide (MoS2)Ge (Germanene)Sn (Stanene)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
於本論文中我們以預鍍過渡金屬再硫化法製備均勻且大面積之二硫化鉬薄膜,並藉由熱蒸鍍沉積系統於二硫化鉬表面成功成長出二維層狀結構的鍺烯及錫烯薄膜。並將此二維層狀結構的錫烯應用於元件探討其電性表現。首先改變成長溫度將鍺烯薄膜成長於兩層二硫化鉬表面,在 400 ℃ 製程條件下,我們成功成長出二維堆疊型態的鍺烯薄膜於二硫化鉬表面,鍺烯薄膜層與層之間的間距經量測為 3.3 Å,此結果也與 XRD量測結果吻合。接著,我們探討於不同成長溫度下成長錫烯薄膜於兩層二硫化鉬表面,從實驗結果發現,於 150 ℃ 及室溫所成長之試片,錫烯薄膜皆會以層狀堆疊的型態成長於二硫化鉬表面,其層與層之間的間距為 2.9 Å,此結果亦與 XRD 量測結果吻合。同時,我們也嘗試於藍寶石基板表面成長錫烯薄膜。於室溫成長之錫烯薄膜依然會以層狀堆疊的型態成長於藍寶石基板表面,其層與層之間的間距為 2.9 Å,由此可知錫烯可於三維結構的基板上進行成長,因此錫烯在未來有著相當大的發展潛力。最後,我們探討以錫烯薄膜作為二硫化鉬之接觸電極,並分析其電性表現。我們製備四種不同金屬接觸電極的 TLM 元件,分別為金/鈦、錫烯、金/錫烯、金/鋁/錫烯。從實驗結果發現,以金/鋁/錫烯做為元件接觸電極有效改善了二維材料與金屬間接觸電阻的問題,特徵接觸電阻從以金/鈦做為接觸電極的 6.63×103 Ω·cm2,下降至以金/鋁/錫烯做為接觸電極的 4.04 Ω·cm2,整整下降了三個數量級。因此以導電二維材料作為半導體二維材料電子元件電極的接觸金屬,可以有效降低電極其接觸電阻,相信在此基礎上未來二維材料與電子元件的應用將會有長足的進步。
In this thesis, large-area molybdenum disulfides (MoS2) are prepared by sulfurizing the pre-deposited transition metal films. We have demonstrated 2D tin (stanene) and germanium (germanene) film growths on MoS2/sapphire substrates by using the thermal evaporation. In the first section, the elemental 2D material of germanene was grown on the MoS2 surface at 400 °C. Observed from the cross-sectional high-resolution transmission electron microscopy image (HRTEM), the layer separation between germanene is 3.3 Å, which is consistent with the value extracted from the XRD curve. Next, we find out that the other 2D material stanene can also be grown on the MoS2 surface at 150°C and room temperature. The stanene layer separation is 2.9 Å. The value is consistent with the value extracted from the XRD curve. We also attempted to grow stanene on sapphire substrates at room temperature. The results show that stanene can also be formed on sapphire substrates at room temperature. Finally, we use stanene as the contact metals for MoS2. Four different contact metal electrodes of these samples were prepared. They are Au/Ti, stanene, Au/stanene, and Au/Al/stanene respectively. By using the transmission line model (TLM), the device using Au/Al/stanene as contact metal shows lower specific contact resistance (ρc) value compare with the device using Au/Ti as electrodes. The values of specific contact resistance (ρc) decreased from 6.63×103 Ω·cm2 to 4.04 Ω·cm2. Totally descending three orders of magnitude. We have demonstrated that the conductive 2D material stanene is a promising candidate as a contact metal for 2D devices. This significant achievement is so impressive, we succeed in stepping across this milestone and look forward to the 2D materials will have a great development potential in the future.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1-1 研究動機與論文架構 1
1-2 二硫化鉬晶體結構與性質 2
1-2-1 二硫化鉬之晶體結構 2
1-2-2 二硫化鉬之拉曼光譜分析 4
1-3 鍺烯 (Germanene) 之基本性質 4
1-3-1 鍺烯之晶體結構 5
1-3-2 鍺烯之拉曼光譜分析 5
1-4 錫烯 (Stanene) 之基本性質 6
1-4-1 錫烯之晶體結構 6
第二章 實驗儀器與實驗步驟 7
2-1 二硫化鉬 (MoS2) 薄膜成長系統 7
2-1-1 射頻濺鍍沉積系統 (Radio-Frequency Sputter System) 7
2-1-2 硫化系統 (Sulfurization System) 9
2-2 四族元素 (鍺烯、錫烯) 薄膜成長系統 10
2-2-1 熱蒸鍍沉積系統 (Thermal Evaporation) 10
2-3 材料分析系統 11
2-3-1 四點探針 (Four-Point Probe Measurement) 11
2-3-2 拉曼光譜儀 (Raman Spectrum) 12
2-3-3 原子力顯微鏡 (Atomic Force Microscopy, AFM) 14
2-3-4 X-光繞射 (X-Ray Diffraction, XRD) 16
2-3-5 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 17
第三章 鍺烯薄膜成長之分析與比較 19
3-1二硫化鉬 (MoS2) 薄膜與鍺烯 (Germanene) 薄膜製備 19
3-1-1 二硫化鉬 (MoS2) 薄膜之製備 19
3-1-2 鍺烯 (Germanene) 薄膜之製備 21
3-2 以熱蒸鍍沉積系統成長鍺烯薄膜 23
3-2-1 改變鍺烯製程溫度成長於二硫化鉬 (MoS2) 基板情形之比較 23
3-2-2 相同製程參數於不同基板成長情形之比較 31
3-3 結論 35
第四章 錫烯薄膜成長之分析與比較 37
4-1 二硫化鉬 (MoS2) 薄膜與錫烯 (Stanene) 薄膜製備 37
4-1-1 二硫化鉬 (MoS2) 薄膜之製備 37
4-1-2 錫烯 (Stanene) 薄膜之製備 37
4-2 以熱蒸鍍沉積系統成長錫烯薄膜 38
4-2-1 改變錫烯製程溫度成長於二硫化鉬基板情形之比較 38
4-2-2 於不同溫度成長薄錫烯於二硫化鉬基板情形之比較 44
4-2-3 改變錫烯製程溫度成長於藍寶石基板情形之比較 46
4-2-4 於不同溫度成長薄錫烯於藍寶石基板情形之比較 50
4-3 結論 52
第五章 元件製備與電性分析 54
5-1以錫烯作為二硫化鉬接觸電極之 TLM 元件製備 54
5-1-1 金與鈦 (Gold / Titanium) TLM 元件製作流程 55
5-1-2 金與錫烯 (Gold / Stanene) TLM 元件製作流程 56
5-1-3 錫烯 (Stanene) TLM 元件製作流程 58
5-1-4 金/鋁/錫烯 (Gold / Aluminium / Stanene) TLM 元件製作流程 60
5-2 錫烯作為二硫化鉬接觸電極 TLM元件電性量測與分析 61
5-2-1 金與鈦 TLM 元件接觸電阻量測與分析 63
5-2-2 錫烯 TLM 元件接觸電阻量測與分析 65
5-2-3 金與錫烯 TLM 元件接觸電阻量測與分析 67
5-2-4 金/鋁/錫烯 TLM 元件接觸電阻量測與分析 70
5-3 結論 73
第六章 總結 75
參考文獻 78
[1] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, “Single-layer MoS2transistors”, Nature Nanotechnology. 6, 147–150, (2011)
[2] Pizzi, Giovanni, et al., "Performance of arsenene and antimonene double-gate MOSFETs from first principles", Nature communications, 7, art. no. 12585, (2016)
[3] Chen, H. A. et al. Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure. ACS Appl. Mater. Interfaces, 10, 15058-15064 (2018).
[4] Saptarshi Das, et al., "High performance multilayer MoS2 transistors with scandium contacts", Nano letters, 13, 1, pp. 100-105, (2012)
[5] Debdeep Jena, et al., "2D crystal semiconductors: Intimate contacts", Nature materials, 13, 12, pp. 1076-1078, (2014)
[6] P.Tonndorf, R.Schmidt, P.Böttger, X.Zhang, “Photoluminescence emission and raman response of monolayer MoS2, MoSe2, and WSe2.”Optics Express.4908-4916,(2013)
[7] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2”, Phys. Rev. B 83, 245213, (2011)
[8] Changgu Lee, Hugen Yan, Louis E. Brus, Tony F. Heinz, James Hone and Sunmin Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2”, ACS Nano. vol4, April, (2010)
[9] Y. Yu, et al.,"Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films", Scientific reports, 3, art. no. 1866, (2013)
[10] Ye, Xue-Sheng, et al. "Intrinsic carrier mobility of germanene is larger than graphene's: first-principle calculations." RSC Advances 4.41 (2014)
[11] Trivedi, Shyam, Anurag Srivastava, and Rajnish Kurchania. "Silicene and germanene: a first principle study of electronic structure and effect of hydrogenation-passivation." Journal of Computational and Theoretical Nanoscience 11.3 (2014)
[12] Zhou, Si, and Jijun Zhao. "Electronic structures of germanene on MoS2: effect of substrate and molecular adsorption." The Journal of Physical Chemistry C 120.38 (2016)
[13] Scalise, Emilio. "Vibrational properties of silicene and germanene." Vibrational Properties of Defective Oxides and 2D Nanolattices. Springer, Cham, (2014)
[14] Xu, Yong, et al. "Large-gap quantum spin Hall insulators in tin films." Physical review letters 111.13 (2013)
[15] Zhu, Feng-feng, et al. "Epitaxial growth of two-dimensional stanene." Nature materials 14.10 (2015)
[16] Yuhara, Junji, et al. "Large area planar stanene epitaxially grown on Ag (111)." 2D Materials 5.2 (2018)
[17] Bhattarai, Rikesh, and Shankar Prasad Shrestha. "Construction of Sheet Resistance Measurement Setup for Tin Dioxide Film Using Four Probe Method." American Journal of Physics and Applications 5.5 (2017)
[18] Y. Du et al., "MoS2 Field-Effect Transistors With Graphene/Metal Heterocontacts", IEEE Electron Device Lett, 35, 5, pp. 599−601, (2014)
[19] G. K. Reeves, and H. B. Harrison, "Obtaining the specific contact resistance from transmission line model measurements", IEEE Electron device letters, 3, 5, pp. 111-113, (1982)
[20] Matijasevic, Goran S., Chin C. Lee, and Chen Y. Wang. "Au Sn alloy phase diagram and properties related to its use as a bonding medium." Thin solid films 223.2 (1993)
[21] Valizadeh, A. R., et al. "The Influence of Cooling Rate on the Microstructure and Microsegregation in Al–30Sn Binary Alloy." Metallography, Microstructure, and Analysis 2.2 (2013)
[22] Zhang, Zhonghua, et al. "Fabrication and characterization of nanoporous gold composites through chemical dealloying of two phase Al–Au alloys." Journal of Materials Chemistry 19.33 (2009)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *