帳號:guest(18.218.212.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:廖健宏
作者(英文):Jian-Hong Liao
論文名稱:自組裝過程中的模板體積效應:有機硫(硒)化磷配位基保護之含鹵素銀簇;多氫銅團簇之X光及中子繞射研究
論文名稱(英文):A Size Effect in Self-Assembly Process: Halide-Encapsulated Silver(I) Clusters Stabilized by Dichalcogenophosphinate Ligands;X-ray and Neutron Diffraction Studies of Copper Hydride Clusters
指導教授:劉鎮維
指導教授(英文):Chei-Wei Liu
口試委員:蔣燕南
Jean-Yves Saillard
劉鎮維
王如春
劉福成
口試委員(英文):Yen-Nan Chiang
Jean-Yves Saillard
Chen-Wei Liu
Ju-Chun Wang
Fu-Chen Liu
學位類別:博士
校院名稱:國立東華大學
系所名稱:化學系
學號:89912005
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:238
關鍵詞:銀團簇模板體績效應中子繞射有機硒化磷配位基銅氫團簇
關鍵詞(英文):Silver clustersize effectneutron diffractiondiselenophosphinate ligandcopper hydride
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
第一章節:自組裝過程中的模板體積效應:有機硫(硒)化磷配位基保護之含鹵素銀簇:合成一系列在正方體金屬骨架中心含有鹵素原子之八核銀團簇,[Ag8(X){E2P(C2H4Ph)2}6]PF6, X = F (1), Cl (2), Br (3), E = S; X = F (5), Cl (6), Br (7), E = Se,藉由改變鹵素原子的大小,使得鹵素原子周圍的正方體金屬骨架會隨著中心模板體積變大而造成金屬架擴張,直至加入更大的碘離子,無法維持八核銀所構成的正方體骨架無法容納碘離子,進而形成十二核銀團簇,[Ag12(I)5{E2P(C2H4Ph)2}6](I), E = S (4), Se (8),並且伴隨著放光現象。
第二章節:多氫銅團簇之X光及中子繞射研究:五個多氫銅團簇化合物:[Cu20(H)11{S2P(OiPr)2}9] (9)、[Cu32(H)20{S2P(OiPr)2}12] (10)、[Cu20(H)11{Se2P(OiPr)2}9] (11)、[Cu36(H)21{S2P(OiPr)2}12]PF6 (12)、 [Cu36(D)19Cl2{S2P(OiBu)2}12]PF6 (13),藉由單晶X光繞射及中子繞射實驗鑑定氫負離子的數量及其準確位置。
Chapter 1: A Size Effect in Self-Assembly Process: Halide-Encapsulated Silver(I) Clusters Stabilized by Dichalcogenophosphinate Ligands: We synthesized a serious of the following new compounds, [Ag8(μ8-X){E2P(CH2CH2Ph)2}6](PF6) (E = S, X = F (1), Cl (2), Br (3); E = Se, X = F (5), Cl (6), Br (7)), and the first example of cuboctahedron Ag12. skeleton, [Ag12(μ12-I)(μ3-I)4{E2P(CH2CH2Ph)2}6](I) E = S (4), Se (8), with a μ12-iodide in the center by experimental and theoretical investigations.
Chapter 2: X-ray and Neutron Diffraction Studies of Copper Hydride Clusters: Locate the number and the location of hydride atoms by single-crystal X-ray and neutron diffraction in five copper hydride clusters, [Cu20(H)11{S2P(OiPr)2}9] (9), [Cu32(H)20{S2P(OiPr)2}12] (10), [Cu20(H)11{Se2P(OiPr)2}9] (11), [Cu36(H)21{S2P(OiPr)2}12]PF6 (12), and [Cu36(D)19Cl2{S2P(OiBu)2}12]PF6 (13).
Chapter 1. A Size Effect in Self-Assembly Process: Halide-Encapsulated Silver(I) Clusters Stabilized by dichalcogenophosphinate Ligands……………………………1

1.1 Introduction…………………………………………………………………..1
1.2 Results and Discussions…………………………………………………...…3
1.2.1 X -ray Diffraction Studies……………………………….……………..4
1.2.2 NMR Studies…………………………………………………………...8
1.2.3 ESI-Mass Spectroscopy Studies……………………………………….9
1.2.4 Computational Results of compound 4……………………………….11
1.2.5 Photophysical Studies…………………………………………….…..14
1.3 Conclusions………………………………………………………………....18
1.4 Experimental Section…………………………………………………….....19
1.4.1 Synthesis……………………………………………………………..19
1.4.2 X-ray Crystallography……………………………………………….22
1.4.3 Computational Details……………………………………………….25

Chapter 2. X-ray and Neutron Diffraction Studies of Copper Hydride Clusters…….27

2.1 X-ray and Neutron Diffraction……………………………………………...27
2.2 Copper Hydride……………………………………………………………..34
2.3 Neutron Diffraction Study of [Cu20(H)11{S2P(OiPr)2}9]……………………38
2.3.1 Experimental Section………………………………………………..38
2.3.2 Results and Discussions……………………………………………..43
2.4 Neutron Diffraction Study of [Cu32(H)20{S2P(OiPr)2}12]……...……………52
2.4.1 Experimental Section………………………………………………..52
2.4.2 Results and Discussions……………………………………………..58
2.5 Neutron Diffraction Study of [Cu20(H)11{Se2P(OiPr)2}12]……......…….…..64
2.5.1 Experimental Section……………………………………………….64
2.5.2 Results and Discussions…………………………………………….71
2.6 Neutron Diffraction Study of [Cu36(H)21{S2P(OiPr)2}12](PF6)…...…….….77
2.6.1 Experimental Section………………………………………………...77
2.6.2 Results and Discussions……………………………………………...81
2.7 Neutron Diffraction Study of [Cu36(D)19Cl2{S2P(OiBu)2}12](PF6)..…….….86
2.7.1 Experimental Section………………………………………………..86
2.7.2 Results and Discussions………………………………………….….90
2.8 Conclusions………………………………………………………………...95
(1) (a) Galeev, T. R.; Romanescu, C.; Li, W.-L.; Wang, L.-S.; Boldyrev, A. I. Angew. Chem. Int. Ed. 2012, 51, 2101. (b) Hermann, A.; Lein, M.; Schwerdtfeger, P. Angew. Chem. Int. Ed. 2007, 46, 2444. (c) Daly, S. R.; Piccoli, P. M. B.; Schultz, A. J.; Todorova, T. K.; Gagliardi, L.; Girolami, G. S. Angew. Chem. Int. Ed. 2010, 49, 3379. (d) Gillespie, R. J.; Silvi, B. Coord. Chem. Rev. 2002, 233−234, 53.
(2) (a) Leiding, J.; Woon, D. E.; Dunning, T. H. J. Phys. Chem. A 2011, 115, 4757. (b) Vedha, S. A.; Solomon, R. V.; Venuvanalingam, P. J. Phys. Chem. A 2013, 117, 3529. (c) Borissova, A. O.; Lyssenko, K. A. Mendeleev Commun. 2011, 21, 160. (d) Ito, K.; Pu, Z. F.; Li, Q. S.; Schleye, P. R. Inorg. Chem. 2008, 47, 10906. (e) Cui, Z.-H.; Contreras, M.; Ding, Y.-H; Merino, G. J. Am. Chem. Soc. 2011, 133, 13228. (f) Islas, R.; Heine, T.; Ito, K.; Schleyer, P. R.; Merino, G. J. Am. Chem. Soc. 2007, 129, 14767.
(3) West, A. R. Basic Solid State Chemistry, 2nd ed.; John Wiley & Sons Ltd: New York, 1999.
(4) (a) Briant, C. E.; Theobald, B. R. C.; White, J. W.; Bell, L. K.; Mingos, D. M. P. J. Chem. Soc., Chem. Commun. 1981, 201. (b) Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. J. Am. Chem. Soc. 2010, 132, 8280. (c) Wan, X.-K.; Lin, Z.-W.; Wang, Q.-M. J. Am. Chem. Soc. 2012, 134, 14750. (d) Yang, C.-L.; Wang, M.-S.; Sun, M.-Y.; Wang, D.-H.; Ma, X.-G.; Gong, Y.-B. Chem. Phys. Lett. 2008, 457, 49.
(5) Zhao, G.-F.; Wang, Y.-L.; Sun, J.-M.; Wang, Y.-X. Acta Phys.-Chim. Sin. 2012, 28, 1355.
(6) Howard, J. A. K.; Spencer, J. L.; Turner, D. G. J. Chem. Soc., Dalton. Trans. 1987, 259.
(7) Albano, V. G.; Grossi, L.; Longoni, G.; Monari, M.; Mulley, S.; Sironi, A. J. Am. Chem. Soc. 1992, 114, 5708.
(8) Chakrahari, K. K.; Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C. W. Angew. Chem. Int. Ed. 2016, 55, 14704.
(9) (a) Thanthiriwatte, K. S.; Vasiliu, M.; Dixon, D. A.; Christe, K. O. Inorg. Chem. 2012, 51, 10966. (b) Law, C.-K.; Chien, S.-H.; Li, W.-K.; Cheung, Y.-S. J. Phys. Chem. A 2002, 106, 11271. (c) Chen, L.; Woon, D. E.; Dunning, T. H. J. Phys. Chem. A 2009, 113, 12645. (d) Schroer, T.; Christe, K. O. Inorg. Chem. 2001, 40, 2415.
(10) (a) Dobado, J. A.; Martínez-García, H.; Molina, J. M.; Sundberg, M. R. J. Am. Chem. Soc. 1999, 121, 3156. (b) Lee, T. J. J. Phys. Chem. 1994, 98, 3697. (c) Chen, L.; Woon, D. E.; Dunning, T. H. J. Phys. Chem. A 2009, 113, 12645.
(11) (a) Curnow, O. J. J. Chem. Educ. 1998, 75, 910.
(12) (a) Wang, R.; Jin, T.; Zhang, Z.; Staples, R. J. Angew. Chem. Int. Ed. 1999, 38, 1813. (b) Wei, Z.-H.; Ni, C.-Y.; Li, H.-X.; Ren, Z.-G.; Sun, Z.-R.; Lang, J.-P. Chem. Commun. 2013, 49, 4836. (c) Li, Y.-J.; Latouche, C.; Kahlal, S.; Liao, J.-H.; Dhayal, R. S.; Saillard, J.-Y.; Liu, C. W. Inorg. Chem. 2012, 51, 7439. (d) Li, B.; Liao, J.-H.; Tang, H.-T.; Li, Y.-J.; Liu, C. W. Dalton Trans. 2013, 42, 14384. (e) Gonzalez-Duarte, P.; Clegg, W.; Casals, I.; Sola, J.; Rius, J. J. Am. Chem. Soc. 1998, 120, 1260. (f) Sachse, A.; Demeshko, S.; Meyer, F. Dalton Trans. 2009, 7756. (g) Wang, Q.-M.; Mak, T. C. W. Chem. Commun. 2000, 1435. (h) Hezel, F.; Fenske, D.; Eisenmann, J.; Wetzel, T. Z. Anorg. Allg. Chem. 2000, 626, 290. (i) Burgi, H. B.; Gehrer, H.; Strickler, P.; Winkler, F. K. Helv. Chim. Acta 1976, 59, 2558.
(13) (a) Liu, C. W.; Hung, C.-M.; Santra, B. K.; Chu, Y.-H.; Wang, J.- C.; Lin, Z. Inorg. Chem. 2004, 43, 4306. (b) Liu, C. W.; Sarkar, B.; Huang, Y.-J.; Liao, P.-K.; Wang, J.-C.; Saillard, J.-Y.; Kahlal, S. J. Am. Chem. Soc. 2009, 131, 11222. (c) Liu, C. W.; Haia, H.-C.; Hung, C.-M.; Santra, B. K.; Liaw, B.-J.; Lin, Z.; Wang, J.-C. Inorg. Chem. 2004, 43, 4464. (d) Latouche, C.; Kahlal, S.; Furet, E.; Liao, P.-K.; Lin, Y.-R.; Fang, C.-S.; Cuny, J.; Liu, C. W.; Saillard, J.-Y. Inorg. Chem. 2013, 52, 7752. (e) Liu, C. W.; Chang, H.-W.; Fang, C.-S.; Sarkar, B.; Wang, J.-C. Chem. Commun. 2010, 46, 4571. (f) Liao, J.-H.; Chang, H.-W.; Li, Y.-J.; Fang, C.-S.; Sarkar, B.; van Zyl, W. E.; Liu, C. W. Dalton Trans. 2014, 43, 12380.
(14) (a) Garland, M. T.; Halet, J.-F.; Saillard, J.-Y. Inorg. Chem. 2001, 40, 3342. (b) Zouchoune, B.; Ogliaro, F.; Halet, J.-F.; Saillard, J.-Y. Inorg. Chem. 1998, 37, 865. (c) Dhayal, R. S.; Liao, J. H.; Lin, Y. R.; Liao, P. K.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. J. Am. Chem. Soc. 2013, 135, 4704.
(15) Rais, D.; Mingos, D. M. P.; Vilar, R.; White, A. J. P.; Williams, D. J. J. Organomet. Chem. 2002, 652, 87.
(16) Galbraith, J. M. J. Chem. Educ. 2007, 84, 783.
(17) (a) Liu, C. W.; Fang, C. S.; Fu, R. J.; Chang, H. W.; Saillard, J. Y.; Kahlal, S.; Wang, J. C.; Chang, I. J. Inorg. Chem. 2010, 49, 4934. (b) Latouche, C.; Liu, C. W.; Saillard, J.-Y. J. Clust. Sci. 2014, 25, 147.
(18) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, 2nd ed.; Pergamon Press: Oxford, 1980.
(19) (a) Rauhut, M. M.; Currier, H. A.; Wystrach, V. P. J. Org. Chem. 1961, 26, 5133. (b) Artem’ev, A. V.; Malysheva, S. F.; Gusarova, N. K.; Trofimov, B. A. Synthesis 2010, 14, 2463-2467
(20) SADABS, version 2014-11.0, Bruker Area Detector Absorption Corrections Bruker AXS Inc., Madison, WI, 2014.
(21) Included in G. Jogl, V4.043: Software for the CCD detector system; Bruker Analytical: Madison, WI, 1995.
(22) (a) Sheldrick, G.; Acta Cryst. A 2008, 64, 112. (b) T. Gruene, H. W. Hahn, A. V. Luebben, F. Meilleur, G. M. Sheldrick, J. Appl. Cryst. 2014, 47, 462.
(23) SHELXTL, version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, M. V.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, rev. A.1; Gaussian Inc., Wallingford, CT, 2009.
(25) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
(26) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
(27) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
(28) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125(194101), 1.
(29) (a) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158. (b) Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029.
(30) Grimme, S. J. Comput. Chem. 2006, 27, 1787.
(31) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.0; Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001; http://www.chem.wisc.edu/∼nbo5.
(32) Gorelsky, S. I. AOMix: Program for Molecular Orbital Analysis, 2009; www.sg-chem.net.
(33) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 284. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. (d) Schafer, A.; Hom, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.
(34) Friedrich, W.; Knipping, P. von Laue, M. Sitzungsberichte der Mathematisch-Physikalischen Classe der Königlich-Bayerischen Akademie der Wissenschaften zu München. 1912: 303.
(35) Bragg, W. L. Z. Kristallogr. 1929, 70, 475.
(36) Bragg, W. L. Proc. Cambridge Philos. Soc. 1913, 17, 43.
(37) Neutron scattering lengths and cross sections of the elements and their isotopes, Neutron News 1992, Vol. 3, (3), pp. 29.
(38) Edwards, A. J.; Dhayal, R. S.; Liao, P.-K.; Liao, J.-H.; Chiang, M.-H.; Piltz, R. O.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Angew. Chem. Int. Ed. 2014, 53, 7214.
(39) The Australian Centre for Neutron Scattering Industrial Liaison Office provides proprietary and non-proprietary services to industry on variety of instruments. Official release of the commercial rate is on ANSTO website. (http://www.ansto.gov.au/ResearchHub/OurInfrastructure/ACNS/Users/Requestingbeamtime/CommercialPrices/index.htm )
(40) (a) Mueller, W. M.; Blackledge, J. P.; Libowitz, G. G. In Metal Hydrides; Academic Press: New York and London, 1968. (b) Dedieu, A. In Transition Metal Hydrides; Wiley-VCH: Weinheim, Germany, 1992. (c) Poli, R.; Peruzzini, M. In Recent Advances in Hydride Chemistry; Amsterdam, 2001; p 557.
(41) (a) Kaesz, H. D.; Saillant, R. B. Chem. Rev. 1972, 72, 231. (b) Lin, Z.; Hall, M. B. Coord. Chem. Rev. 1994, 135, 845. (c) Sabo-Etienne, S.; Chaudret, B. Coord. Chem. Rev. 1998, 178, 381. (d) Maseras, F.; Lledos, A.; Clot, E.; Eisenstein, O. Chem. Rev. 2000, 100, 601. (e) King, R. B. Coord. Chem. Rev. 2000, 200−202, 813. (f) Hoskin, A. J.; Stephan, D. W. Coord. Chem. Rev. 2002, 233−234, 107. (g) Morris, R. H. Coord. Chem. Rev. 2008, 252, 2381. (h) Holland, P. L. Acc. Chem. Res. 2008, 41, 905. (i) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100.
(42) (a) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc., A: Inorg. Phys. Theor. 1966, 1711. (b) Angelici, R. J. Acc. Chem. Res. 1988, 21, 387. (c) Brestensky, D. M.; Stryker, J. M. Tetrahedron Lett. 1989, 30, 5677. (d) Miller, K. M.; Luanphaisarnnont, T.; Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 4130. (e) Brayshaw, S. K.; Harrison, A.; McIndoe, J. S.; Marken, F.; Raithby, P. R.; Warren, J. E.; Weller, A. S. J. Am. Chem. Soc. 2007, 129, 1793
(43) (a) Sakintuna, B.; Lamari-Dakrim, F.; Hirscher, M. Int. J. Hydrogen Energy 2007, 32, 1121. (b) Bogdanović, B.; Schwickardi, M. J. Alloys Compd. 1997, 253−254, 1. (c) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353. (d) Fukuzumi, S.; Suenobu, T. Dalton Trans. 2013, 42, 18.
(44) Würtz, A. Sur L̀Hydrure De. Ann. Chim. Phys. 1844, 11, 250.
(45) Mikheeva, V. I.; Mal’tseva, N. N. Russ. J. Inorg. Chem. 1961, 6, 1.
(46) Mikheeva, V. I. Hydrides of the Transition Metals; Office of Technical Services, Department of Commerce, Washington, D.C., 1962; p 128.
(47) Lipshutz, B. H. In Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, Germany, 2002; p 167.
(48) Müller, H.; Bradley, A. J. J. Chem. Soc. 1926, 1669.
(49) Goedkoop, J. A.; Andresen, A. F. Acta Crystallogr. 1955, 8, 118.
(50) (a) Bau, R.; Drabnis, M. H. Inorg. Chim. Acta 1997, 27. (b) Piccoli, P. M. B.; Koetzle, T. F.; Schultz, A. J. Comments Inorg. Chem. 2007, 28, 3.
(51) (a) Lutz, F.; Bau, R.; Wu, P.; Koetzle, T. F.; Krüger, C.; Schneider, J. J. Inorg. Chem. 1996, 35, 2698. (b) Teller, R. G.; Wilson, R. D.; McMullan, R. K.; Koetzle, T. F.; Bau, R. J. Am. Chem. Soc. 1978, 100, 3071. (c) Hart, D. W.; Teller, R. G.; Wei, C. Y.; Bau, R.; Longoni, G.; Campanella, S.; Chini, P.; Koetzle, T. F. Angew. Chem. Int. Ed. Engl. 1979, 18, 80. (d) Hart, D. W.; Teller, R. G.; Wei, C. Y.; Bau, R.; Longoni, G.; Campanella, S.; Chini, P.; Koetzle, T. F. J. Am. Chem. Soc. 1981, 103, 1458. (e) Bau, R.; Drabnis, M. H.; Garlaschelli, L.; Klooster, W. T.; Xie, Z.; Koetzle, T. F.; Martinengo, S. Science 1997, 275, 1099. (f) Broach, R. W.; Dahl, L. F.; Longoni, G.; Chini, P.; Schultz, A. J.; Williams, J. M. Adv. Chem. Ser. 1979, 167, 93.
(52) (a) Tardif, O.; Nishiura, M.; Hou, Z. Organnometallics 2003, 22, 1171. (b) Cui, D.; Tardif, O.; Hou, Z. J. Am. Chem. Soc. 2004, 126, 1312. (c) Cui, D.; Nishiura, M.; Hou, Z. Angew. Chem. Int. Ed. 2005, 44, 959. (d) Li, X.; Baldamus, J.; Nishiura, M.; Tardif, O.; Hou, Z. Angew. Chem. Int. Ed. 2006, 45, 8184. (e) Hou, Z.; Nishiura, M.; Shima, T. Eur. J. Inorg. Chem. 2007, 2535. (f) Yousufuddin, M.; Gutmann, M. J.; Baldamus, J.; Tardif, O.; Hou, Z.; Mason, S. A.; McIntyre, G. J.; Bau, R. J. Am. Chem. Soc. 2008, 130, 3888. (g) Takenaka, Y.; Shima, T.; Baldamus, J.; Hou, Z. Angew. Chem. Int. Ed. 2009, 48, 7888. (h) Shima, T.; Nishiura, M.; Hou, Z. Organometallics 2011, 30, 2513. (i) Zhang, W.-X.; Wang, Z.; Nishiura, M.; Xi, Z.; Hou, Z. J. Am. Chem. Soc. 2011, 133, 5712. (j) Hong, J.; Zhang, L.; Yu, X.; Li, M.; Zhang, Z.; Zheng, P.; Nishiura, M.; Hou, Z.; Zhou, X. Chem. Eur. J. 2011, 17, 2130. (k) Shima, T.; Luo, Y.; Stewart, T.; Bau, R.; McIntyre, G. J.; Mason, S. A.; Hou, Z. Nat. Chem. 2011, 3, 814.
(53) Dhayal, R. S.; Liao, J.-H.; Lin, Y.-R.; Liao, P.-K.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. J. Am. Chem. Soc. 2013, 135, 4704.
(54) (a) Liao, P.-K.; Sarkar, B.; Chang, H.-W.; Wang, J.-C.; Liu, C. W. Inorg. Chem. 2009, 48, 4089. (b) Liu, C. W.; Sarkar, B.; Huang, Y.-J.; Liao, P.-K.; Wang, J.-C.; Saillard, J.-Y.; Kahlal, S. J. Am. Chem. Soc. 2009, 133, 11222. (c) Liu, C. W.; Chang, H.-W.; Sarkar, B.; Saillard, J.- Y.; Kahlal, S.; Wu, Y.-Y. Inorg. Chem. 2010, 49, 468. (d) Liu, C. W.; Chang, H.-W.; Fang, C.-S.; Sarkar, B.; Wang, J.-C. Chem. Commun. 2010, 46, 4571. (e) Liao, P.-K.; Liu, K.-G.; Fang, C.-S.; Liu, C. W.; Fackler, J. P., Jr.; Wu, Y.-Y. Inorg. Chem. 2011, 50, 8410. (f) Liao, P.-K.; Shi, D.-R.; Liao, J.-H.; Liu, C. W.; Artemev, A. V.; Kuimov, V. A.; Gusarova, N. K.; Trofimov, B. A. Eur. J. Inorg. Chem. 2012, 4921. (g) Latouche, C.; Liu, C. W.; Saillard, J.-Y. J. Clust. Sci. 2014, 25, 147.
(55) (a) Liao, P.-K.; Fang, C.-S.; Edward, A. J.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Inorg. Chem. 2012, 51, 6577. (b) Latouche, C.; Kahlal, S.; Lin, Y.-R.; Liao, J.-H.; Furet, E.; Liu, C. W.; Saillard, J.-Y. Inorg. Chem. 2013, 52, 13253.
(56) (a) Stevens, R. C.; McLean, M. R.; Bau, R. J. Am. Chem. Soc. 1989, 111, 3472. (b) Bennett, E. L.; Murphy, P. J.; Imberti, S.; Parker, S. F. Inorg. Chem. 2014, 53, 2963. As noted by Parker et al. based on the inelastic neutron scattering study of Stryker’s reagent, [HCu{P(C6H5)3}]6, the location of hydrides in the Cu6 core may be best described as the edge-bridging (μ2-H) rather than triply bridging (μ3-H) as reported by Bau et al. on the p-tolyl derivative.
(57) Jogl, G.; Wang, X.; Mason, S. A.; Kovalevsky, A.; Mustyakimov, M.; Fisher, Z.; Hoffman, C.; Kratky, C.; Langan, P. Acta Crystallogr., Sect. D 2011, 67, 584.
(58) Zikovsky, J.; Peterson, P. F.; Wang, X.; Frost, M.; Hoffmann, C. J. Appl. Crystallogr. 2011, 44, 418.
(59) Schultz, A. J.; Jorgensen, M. R. V.; Wang, X.; Mikkelson, R. L.; Mikkelson, D. J.; Lynch, V. E.; Peterson, P. F.; Green, M. L.; Hoffmann, C. J. Appl. Crystallogr. 2014, 47, 915.
(60) Schultz, A. J.; Srinivasan, K.; Teller, R. G.; Williams, J. M.; Lukehart, C. M. J. Am. Chem. Soc. 1984, 106, 999.
(61) Farrugia, L. J. Appl. Crystallogr. 2012, 45, 849.
(62) Spek, A. J. Appl. Crystallogr. 2003, 36, 7.
(63) (a) Dunning, T. H., Jr.; Hay, P. J. In Methods of Electronic Structure Theory; Schaeffer, H. F., Eds.; Plenum Press: New York, 1977. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 284. (d) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. (e) Schafer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.
(64) (a) Mankad, N. P.; Laitar, D. S.; Sadighi, J. P. Organometallics 2004, 23, 3369. (b) Frey, G. D.; Donnadieu, B.; Soleilhavoup, M.; Bertrand, G. Chem.−Asian J. 2011, 6, 402.
(65) Jogl, G.; Wang, X.; Mason, S. A.; Kovalevsky, A.; Mustyakimov, M.; Fisher, Z.; Hoffman, C.; Kratky, C.; Langan, P. Acta Crystallogr. Sect. D 2011, 67, 584.
(66) Larson, A. C.; von Dreele, R. B. in General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR 86-748; Los Alamos National Laboratory, Los Alamos, NM, 2004.
(67) Catalan, E. C.; École, J. Polytechnique 1865, 24, 1.
(68) (a) Johnson, N. W. Canad. J. Math. 1966, 18, 169. (b) Zalgaller, V. A. in Convex Polyhedra with Regular Faces; Vol. 2, New York: Consultants Bureau, 1969.
(69) Alvarez, S. Dalton Trans. 2005, 2209.
(70) R. Bau, M. H. Drabnis, L. Garlaschelli, W. T. Klooster, Z. Xie, T. F. Koetzle, S. Martinengo, Science 1997, 275, 1099.
(71) Liao, J.-H.; Dhayal, R. S.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Inorg. Chem. 2014, 53, 11140.
(72) (a) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijin, J.; Verschoor, G. C. J. Chem. Soc. Dalton Trans. 1984, 1349. (b) Sarkar, B.; Liaw, B.-J.; Fang, C.-S.; Liu, C. W. Inorg. Chem. 2008, 47, 2777.
(73) van der Sluis, P.; Spek, A. L. Acta Cryst. 1990, A46, 194.
(74) (a) London, F. J. Phys. Radium 1937, 8, 397. (b) McWeeny, R. Phys. Rev. 1962, 126, 1028; (c) Ditchfield, R. Mol. Phys. 1974, 27, 789; (d) Dodds, J. L.; McWeeny, R.; Sadlej, A. J. Mol. Phys. 1977, 34, 1779; e) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251.
(75) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627.
(76) Lobana, T. S.; Wang, J.-C.; Liu, C. W. Coord. Chem. Rev. 2007, 251, 91.
(77) Wan, X.-K.; Yuan, S.-F.; Lin, Z.-W.; Wang, Q.-M. Angew. Chem. Int. Ed. 2014, 53, 2923; Angew. Chem. 2014, 126, 2967.
(78) Dhayal R. S.; Liao, J.-H.; Kahlal, S.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; van Zyl, W. E.; Saillard, J.-Y.; Liu, C. W. Chem. Eur. J. 2015, 21, 8369.
(79) Dhayal, R. S.; Liao, J.-H.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Angew. Chem. Int. Ed. 2015, 54, 13604; Angew. Chem. 2015, 127, 13808.
(80) (a) de Heer, W. A. Rev. Mod. Phys. 1993, 65, 611, and references therein. (b) Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Gronbeck, H.; Hakkinen, H. Proc. Natl. Acad. Sci. USA 2008, 105, 9157. (c) Häkkinen, H. Chem. Soc. Rev. 2008, 37, 1847. (d) Gutrath, B. S.; Oppel, I. B.; Presly, O.; Beljakov, I.; Meded, V.; Wenzel, W.; Simon, U. Angew. Chem. Int. Ed. 2013, 52, 3529; Angew. Chem. 2013, 125, 3614.
(81) Dhayal, R. S.; Liao, J.-H.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Angew. Chem. Int. Ed. 2015, 54, 3702; Angew. Chem. 2015, 127, 3773.
(82) Chang, W.-T.; Lee, P.-Y.; Liao, J.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Angew. Chem. Int. Ed. 2017, 56, 10178.
(83) (a) Moret, M.-E.; Zhang, L.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 3792. (b) Weinberger, D. S.; Amin Sk, N.; Mondal, K. C.; Melaimi, M.; Bertrand, G.; Stgckl, A. C.; Roesky, H. W.; Dittrich, B.; Demeshko, S.; Schwederski, B.; Kaim, W.; Jerabek, P.; Frenking, G. J. Am. Chem. Soc. 2014, 136, 6235.
(84) (a) Jerabek, P.; Roesky, H. W.; Bertrand, G.; Frenking, G. J. Am. Chem. Soc. 2014, 136, 17123. (b) Ganesamoorthy, C.; Weßing, J.; Kroll, C.; Seidel, R. W.; Gemel, C.; Fischer, R. A. Angew. Chem. Int. Ed. 2014, 53, 7943.
(85) Bratsch, S. G. J. Phys. Chem. Ref. Data 1989, 18, 1.
(86) (a) Nguyen, T.-A. D.; Jones, Z. R.; Goldsmith, B. R.; Buratto, W. R.; Wu, G.; Scott, S. L.; Hayton, T. W. J. Am. Chem. Soc. 2015, 137, 13319. (b) Nguyen, T.-A. D.; Jones, Z. R.; Leto, D. F.; Wu, G.; Scott, S. L.; Hayton, T. W. Chem. Mater. 2016, 28, 8385. (c) Nguyen, T.-A. D.; Goldsmith, B. R.; Zaman, H. T.; Wu, G.; Peters, B.; Hayton, T. W. Chem. Eur. J. 2015, 21, 5341.
(87) Lai, Zheng-Yi Department of Chemistry, National Dong Hwa University 2016, Master thesis.
(88) Tang, Q.; Lee, Y.; Li, D.-Y.; Choi, W.; Liu, C. W.; Lee, D.; Jiang, De-en J. Am. Chem. Soc. 2017, 139, 9728.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 二硫磷酸配位基與銅的金屬團簇,催化碳-氮鍵[3+2]環化反應之研究
2. 以陰離子模板合成含二硫磷酸配位基之多核銀金屬團簇
3. 含碘與多硫磷酸配位基之多核金屬團簇(銅,銀)的合成、結構與光物理性質研究
4. 2,2’—聯嘧啶架橋之鑭系金屬(鈰、釤、銪)與過渡金屬(鐵、鋅)雙核化合物的合成與研究
5. 利用碘分子行氧化加成於硒(給予電子)配位基所形成的雙核金化合物中之反應研究
6. 含有二硫(硒)磷酸配位基之十一核銅金屬簇的合成、結構與光物理性質研究
7. 含有聯奈酚磷酸酯配位基與鋅、鎘、銅、銀金屬錯合物的結構和合成反應研究
8. 利用黃酸鹽與有機硒化磷配位基合成多核銅金屬團簇之反應與研究
9. 含有機硒化磷配位基之銻、鉍、鉻、銅金屬錯合物及含二硫磷酸配位基之中心體硫九核銀金屬團簇的反應研究
10. 利用雙硫配位基合成含氫離子之銅與銀金屬團簇的反應與研究
11. 含二硫(硒)磷酸配位基及鹵素之金屬鎘、汞配位聚合物之研究
12. 含二硒磷酸配位基之釕化合物合成以及二硒(硫)磷酸配位基與含氮配位基之鋅金屬發光化合物的研究
13. 使用銻和鉍的二硒磷酸錯合物以Solvothermal Method製備奈米尺度的金屬硒化物和金屬磷酸物
14. 利用二硒代氨基甲酸鹽類配位基合成多核銅金屬團簇之反應與研究
15. 含二硫磷酸配位基之雙核鑭系金屬錯合物之化學及物理性質研究
 
* *