帳號:guest(3.141.198.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉均華
作者(英文):Chun-Hua Liu
論文名稱:能源互聯網的電動車協調充電與電力調度
論文名稱(英文):Coordinated electric vehicle charging and power scheduling for the Internet of energy
指導教授:黃振榮
指導教授(英文):Chenn-Jung Huang
口試委員:王宇武
陳亮均
口試委員(英文):Yu-Wu Wang
Liang-Chun Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610223023
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:42
關鍵詞:電動車充電電力調度最佳化可再生能源
關鍵詞(英文):electric vehicle chargingpower schedulingoptimizationrenewable
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
由於電動車的發展受限於充電的不便,目前大多數的電動車(Electric Vehicles, EVs)在充電站或住家/工作場所充電。如果行進間的電動車在到達目的地之前需要電力,它必須繞行到附近的充電站才能進行充電。然而目前充電站的設置數量還遠遠不足。因此,距離最近的充電站的方向可能明顯偏離電動車到目的地的原始路線,這會帶給電動車不便和多出的能耗。然而很少有研究提出短期能源管理系統,該系統考慮到了電動車充電的靈活度和分散式網格(Distributed Power Grids)之間的互助,以實現與未來的電網格(Power Grids)相關的益處。此外,還沒有研究將自適應路由選擇和充電需求融入未來電力網絡(Power Network)的能源管理系統中。為此,本研究提出了整合的日前電力調度系統(Intraday-Ahead Power Scheduling System, DAPS),該系統考慮了行進間的電動車的減排和自適應路由/充電需求,以解決複雜的短期能源管理問題。本文提出了電力共享機制,將區域網格產生的多餘電力分配給其他面臨電力供應不足的地區,從而達到在尖峰負載時段最大限度地利用可再生能源和減輕傳統發電的負擔為目的。此外,還採用了即時電力校正機制,來處理不穩定的可再生能源發電、電力負載和行進間的電動車充電需求的預測誤差。模擬的結果顯示,該方案能夠滿足行進間的電動車的優先充電需求,有效利用可再生能源發電,降低對傳統電力的需求,即時平衡電力市場中的尖峰和離峰負載。
One problem constraining the development of electric vehicles (EVs) lies in the inconvenience of charging. Currently, most EVs get charged at charging stations or at the home/workplace. If a moving EV demands power before it can arrive at the destination, it will have to detour to a nearby charging station to get charged first. However, the current deployment of charging stations is still far from sufficient. Consequently, the nearest charging stations may be in directions significantly deviating from the EV’s original route to the destination. This causes inconvenience and extra energy consumption for the EVs. However, little research work has presented short-term energy management systems that take flexible EV charging and the cooperation of distributed power grids into consideration to realize the benefits associated with the future power grids. Furthermore, there is no research integrates adaptive routing and charging demand for moving EVs into the energy management system of the future power network. Accordingly, an integrated intraday-ahead power scheduling system that considers emission reduction and adaptive routing/charging demand of moving EVs is proposed in this work to tackle the complex short term energy management problems. An electricity sharing mechanism is presented in this work to allocate excess electricity generated by a regional grid to others facing with power supply shortage, and the maximization of the use of renewable energy and reduction of the burden on traditional power generation during time period of peak load can be achieved accordingly. In addition, a real-time power tracking mechanism is employed to deal with the forecast errors of volatile renewable power generation, electricity load, and individual moving EV charging demand. The simulation results reveal that the proposed work can satisfy the preferred charging demand of moving EVs, utilize renewable generation efficiently, lessen the demand of traditional power, and balance peak and off-peak period loads in an electricity market in real time.
第一章、緒論 1
第一節、研究背景 1
第二節、研究目的. 1
第三節、研究流程 2
第四節、論文架構 3
第二章、文獻探討 5
第三章、能源互聯網日前調度系統 7
第一節、電動車協調充電與電力調度 6
第二節、行進間的電動車的即時路由和充電劃 9
第三節、充電點即時充電度 13
第四節、主幹電網即時電力供需校正 13
第五節、區域網格即時電力供需校正 14
第六節、產消者/充電點的即時電力供需校正 14
第七節、主幹電網日前電力調度 15
第八節、區域網格日前電力調度 17
第九節、產消者/充電點的日前電力調度 19
第四章、模擬分析與實驗結果 25
第五章、結論 37
參考文獻 39
[1] Yan, B., Luh, P. B., Warner, G., & Zhang, P. (2017). Operation and Design Optimization of Microgrids with Renewables. IEEE Transactions on Automation Science and Engineering, 14(2), 573-585.
[2] Li, Z., & Xu, Y. (2018). Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes. Applied Energy, 210, 974-986.
[3] Wang, K., Gu, L., He, X., Guo, S., Sun, Y., Vinel, A., & Shen, J. (2017). Distributed Energy Management for Vehicle-to-Grid Networks. IEEE Network, 31(2), 22-28.
[4] Wang, K., Yu, J., Yu, Y. Qian, Y., Zeng, D., Guo, S, Xiang, Y., & Wu, J. (2018) A survey on energy internet: Architecture, approach, and emerging technologies. IEEE Systems Journal. 12(3), 2403-2416.
[5] Hong, B., Zhang, W., Zhou, Y., Chen, J., Xiang, Y., & Mu, Y. (2018). Energy-Internet-oriented microgrid energy management system architecture and its application in China. Applied Energy, 228, 2153-2164.
[6] Shi, X., Wen, G., Cao, J., & Yu, X. Model Predictive Power Dispatch and Control with Price-elastic Load in Energy Internet. To appear in IEEE Transactions on Industrial Informatics.
[7] Lin, C. C., Deng, D. J., Kuo, C. C., & Liang, Y. L. (2018). Optimal Charging Control of Energy Storage and Electric Vehicle of an Individual in the Internet of Energy with Energy Trading. To appear in IEEE Transactions on Industrial Informatics, 14(6), 2570 - 2578
[8] H. Zhang, Y. Li, D. W. Gao, & J. Zhou, Distributed Optimal Energy Management for Energy Internet. IEEE Transactions on Industrial Informatics, (2017).
[9] Du, L., Zhang, L., Tian, X., & Lei, J. (2018). Efficient Forecasting Scheme and Optimal Delivery Approach of Energy for the Energy Internet. IEEE ACCESS, 6, 15026-15038.
[10] Dou, C., Yue, D., Han, Q. L., & Guerrero, J. M. (2017). Multi-agent system-based event-triggered hybrid control scheme for energy Internet. IEEE Access, 5, 3263-3272.
[11] Liu, Z., Wu, Q., Ma, K., Shahidehpour, M., Xue, Y., & Huang, S. (2018). Two-Stage Optimal Scheduling of Electric Vehicle Charging based on Transactive Control. IEEE Transactions on Smart Grid.
[12] Tan, X., Qu, G., Sun, B., Li, N., & Tsang, D. H. Optimal scheduling of battery charging station serving electric vehicles based on battery swapping. To appear in IEEE Transactions on Smart Grid.
[13] Wu, H., Pang, G. K. H., Choy, K. L., & Lam, H. Y. (2018). An Optimization Model for Electric Vehicle Battery Charging at a Battery Swapping Station. IEEE Transactions on Vehicular Technology, 67(2), 881-895.
[14] Lin, C. C., Deng, D. J., Kuo, C. C., & Liang, Y. L. (2017). Optimal Charging Control of Energy Storage and Electric Vehicle of an Individual in the Internet of Energy with Energy Trading. IEEE Transactions on Industrial Informatics.
[15] Tan, J. & Wang, L. (2017). Real-time charging navigation of electric vehicles to fast charging stations: A hierarchical game approach. IEEE Transactions on Smart Grid, 8(2), 846-856.
[16] Y. Cao, O. Kaiwartya, R. Wang, T. Jiang, Y. Cao, N. Aslam, & G. Sexton, (2017). Toward Efficient, Scalable, and Coordinated On-the-Move EV Charging Management. IEEE Wireless Communications, 24(2), 66-73.
[17] Y. Cao, S. Yang, G. Min, X. Zhang, H. Song, O. Kaiwartya, & N. Aslam, (2017). A Cost-Efficient Communication Framework for Battery-Switch-Based Electric Vehicle Charging. IEEE Communications Magazine, 55(5), 162-169.
[18] A. Echols, S. Mukherjee, M. Mickelsen, & Z. Pantic, (2017, March). Communication Infrastructure for Dynamic Wireless Charging of Electric Vehicles. In 2017 IEEE Wireless Communications and Networking Conference (WCNC), (pp. 1-6). IEEE.
[19] C. C., Huang & C. L. Lin, (2017). Wireless Power and Bidirectional Data Transfer Scheme for Battery Charger. IEEE Transactions on Power Electronics.
[20] Vanouni, M. & Lu, N. (2018). A reward allocation mechanism for thermostatically controlled loads participating in intra-hour ancillary services. IEEE Transactions on Smart Grid, 9(5), 4209-4219.
[21] Lin, Y., Barooah, P., & Mathieu, J. L. (2017). Ancillary services through demand scheduling and control of commercial buildings. IEEE Transactions on Power Systems, 32(1), 186-197.
[22] Rahnama, S., Green, T., Lyhne, C. H., & Bendtsen, J. D. (2017). Industrial demand management providing ancillary services to the distribution grid: Experimental verification. IEEE Transactions on Control Systems Technology, 25(2), 485-495.
[23] Trovato, V., Teng, F., & Strbac, G. (2018). Role and benefits of flexible thermostatically controlled loads in future low-carbon systems. IEEE Transactions on Smart Grid, 9(5), 5067-5079.
[24] Qureshi, F. A. & Jones, C. N. (2018). Hierarchical control of building HVAC system for ancillary services provision. Energy and Buildings, 169, 216-227.
[25] Zhang, R., Cheng, X., & Yang, L. (2016). Energy Management Framework for Electric Vehicles in the Smart Grid: A Three-Party Game. IEEE Communications Magazine, 54(12), 93-101.
[26] Hu, J., Cao, J., Chen, M. Z., Yu, J., Yao, J., Yang, S., & Yong, T. (2017). Load following of multiple heterogeneous TCL aggregators by centralized control. IEEE Transactions on Power Systems, 32(4), 3157-3167.
[27] Kleidaras, A., Kiprakis, A. E., & Thompson, J. S. (2018). Human in the loop heterogeneous modelling of thermostatically controlled loads for demand side management studies. Energy, 145, 754-769.
[28] Zhao, J., Gao, Y., Qu, Y., Yin, H., Liu, Y., & Sun, H. (2018). Travel Time Prediction: Based on Gated Recurrent Unit Method and Data Fusion. IEEE Access, 6, 70463-70472.
[29] Ju, C., Wang, P., Goel, L., & Xu, Y. (2018). A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs. IEEE Transactions on Smart Grid, 9(6), 6047-6057.
[30] http://data-archive.ethz.ch/delivery/DeliveryManagerServlet?dps_pid=IE594964.
[31] https://transparency.entsoe.eu/generation/r2/dayAheadGenerationForecastWindAndSolar/show.
[32] H. Akhavan-Hejazi, H. Mohsenian-Rad, & A. Nejat, Developing a test data set for electric vehicle applications in smart grid research. In 2014 IEEE 80th Vehicular Technology Conference (VTC Fall), 1-6.
[33] M. Mahmoodi, P. Shamsi, & B. Fahimi, Optimal scheduling of microgrid operation considering the time-of-use price of electricity. In IECON IEEE 2013-39th Annual Conference of the Industrial Electronics Society. (2013) 2127-2132.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *