帳號:guest(3.138.116.241)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:邱子銓
作者(英文):Tz-Chiuan Chiou
論文名稱:退火對於二氧化鈦薄膜室溫鐵磁性質影響之研究
論文名稱(英文):Room Temperature Ferromagnetism Properties of Annealed TiO2 Thin Films
指導教授:翁明壽
指導教授(英文):Ming-Show Wong
口試委員:楊天賜
翁明壽
余英松
口試委員(英文):Tien-Syh Yang
Ming-Show Wong
Ing-Song Yu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610322005
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:121
關鍵詞:二氧化鈦薄膜反應式磁控濺鍍室溫鐵磁性退火飽和磁化量界面晶界類晶粒
關鍵詞(英文):TiO2Titanium dioxideThin Filmreactive magnetron sputterRTFMRoom Temperature FerromagnetismannealingMSsaturation magnetizationinterfacegrain boundarypseudo-grain
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
  本研究以反應式磁控濺鍍系統 (Reactive magnetron sputtering) 於不同氧流量下,改變沉積時間,經不同溫度熱退火處理,製備相同晶相不同結晶程度之二氧化鈦 (TiO2) 薄膜,以了解其與室溫鐵磁性 (Room temperature ferromagnetism, RTFM) 之間的關係。使用 X 光繞射儀 (XRD) 分析薄膜表面結構、場發射掃描式電子顯微鏡 (FE-SEM) 觀察其表面形貌、超導量子干涉磁量儀 (SQUID) 量測其磁學性質。
  本研究中發現,矽基板以包括 HF 之流程進行清潔後,保存於大氣環境中約 72 小時,其磁性表現會單一的由逆磁性轉變為同時存在逆磁性與鐵磁性。因此本研究於實驗過程中,矽基板於清潔後皆即刻置入真空腔體中,以降低與空氣接觸的機會從而減少汙染物的沾粘或氧化矽的生成。
  藉由改變二氧化鈦薄膜製程時間,於 6 sccm 之氧氣條件下製備大約 470 nm 與 60 nm 後,再以不同溫度於大氣下退火。可發現 400°C 退火的 470 nm 樣品,相對於初鍍薄膜或 350°C 退火的樣品,其 anatase 與 rutile 相之結晶性較佳,且與非晶相二氧化鈦同時存在於薄膜內,使得結晶/非晶或不同相之間的接觸界面 (interfaces) 較多,故具有較高的飽和磁化量,達 0.16 emu/cc;由於晶粒成長時易受到薄膜厚度的限制,故於樣品 400°C 退火的 60 nm 樣品中,僅可於其表面觀察到許多小團簇生成,單位體積薄膜中不同結構相之界面數量變多,因此其飽和磁化量可達到最高 0.44 emu/cc。將氧流量改為 7 sccm,而薄膜厚度仍為約 60 nm 之條件下所製備之 TiO2 薄膜,可在經過 280°C 大氣退火後,恰好觀察到類結晶粒 (pseudo - grain) 的生成,使其不同結構間相互接觸的界面增加,而使其飽和磁化量達到 39 emu/cc。然而,當薄膜已經形成數結晶性相對良好之 Anatase 時,樣品中之界面數量明顯少於其他結晶性較差的樣品,因而無法表現出室溫鐵磁性。
  本研究中亦發現當二氧化鈦薄膜的厚度在 ~56 nm至 ~67 nm 時,對於退火溫度的變化較 470 nm 之薄膜為敏感,僅數奈米差異之膜厚,即可使二氧化鈦薄膜恰好由非晶相轉變為結晶相或類結晶粒時之臨界溫度 (critical temperature),由 280°C 降至 250°C 以下。此外,具有最大飽和磁化量 39 emu/cc 之樣品,O7-60A280 經靜置一個月後卻驟降至 1.3 emu/cc,可見樣品之穩定性不如預期。因而使得二氧化鈦薄膜於室溫鐵磁性相關研究中的再現性難度大大提高。
  綜合以上結果推測:氧化物薄膜中容易累積於晶粒表面的許多缺陷,如氧空缺、間隙鈦、間隙氧等,可能為其室溫鐵磁性之來源,因此在薄膜結構過於單一 (太過混亂或過於整齊排列) 的樣品中,並無法觀測到鐵磁性現象。
  The purpose of this study is to investigate the effect of heat treatment and crystallinity on the RTFM (room temperature ferromagnetism) properties of TiO2 films prepared by magnetron sputtering system.
  TiO2 thin films were deposited under different oxygen flow rate and the film thickness controlled by varying deposition time. After deposition, the samples were annealed under different temperatures by RTA (rapid thermal anneal) to vary their phase and crystallinity. From the results, the possible source for RTFM might be the point defects of oxide thin film accumulating on the interfaces, such as oxygen vacancies, interstitial Ti and O. Therefore, the hysteresis feature was no longer valid when the thin film structure was a homogeneous phase, either completely crystalline or amorphous.
  Reactive sputtering method was used to prepare titanium dioxide thin films on Si(100) p-type substrates. Magnetic properties changed from pure diamagnetic to both diamagnetic and ferromagnetic due to the formation of silicon oxides on surface. Accordingly, the silicon substrates were placed in a vacuum chamber immediately after cleaning, to reduce contact with air and formation of silicon oxide.
  Titanium dioxide films were prepared under oxygen flow rate at 6 sccm with two different thickness 470 nm and 60 nm. Annealing films in the same conditions, grain size and grain growth was usually limited by film thickness. This phenomenon could be favorable to increase the number of interfaces between different phases within the films. Hence, the maximum saturation magnetization reached up to 0.44 emu/cc.
  The critical topography of the 60 nm films had changed from amorphous to pseudo-grain under the oxygen flow rate at 7 sccm and annealed in air via different temperatures between 250°C and 300°C. The sample annealed under 280°C in air processed mixed phases of anatase and amorphous TiO2 and exhibited the highest MS (saturated magnetization) up to 39 emu/cc. This could be due to the increase in the number of interfaces between crystalline anatase crystallites and amorphous phase. However, the MS of the same film dropped to 1.3 emu/cc after residing for one month, indicating that the sample deteriorated with time.
  All in all, the critical annealing temperature range to initiate the 60 nm thick TiO2 film to transform from amorphous to crystalline or pseudo-grain was sensitive to subtle temperature change and thickness within few nanometers. The stringent conditions make it troublesome to repeat the experimental results.
致謝 i
摘要 iii
Abstract vii
目錄 xi
第一章 序論 1
1.1 前言 1
1.2 研究動機 3
第二章 簡介與文獻回顧 7
2.1 磁學簡介 7
2.2 磁性種類 8
2.3 室溫鐵磁性半導體研究 18
2.3.1 Ⅲ-Ⅴ 族半導體 18
2.3.2 氧化物半導體摻雜過度金屬元素 19
2.3.3 未摻雜之氧化物半導體 23
2.4 TiO2 簡介 31
2.5 物理氣相沉積 (PVD) 38
2.6 電漿放電與濺鍍 39
2.7 薄膜成長機制 44
第三章 實驗設備及製程 49
3.1 樣品製備之儀器與方法 49
3.1.1 反應式磁控濺鍍系統 52
3.1.2 基材準備 55
3.1.3 實驗製程 56
3.2 薄膜分析與量測方法 57
3.2.1 三維表面輪廓儀 (3D-surface profiler) 57
3.2.2 X 光繞射儀 (X-Ray Diffraction, XRD) 59
3.2.3 場發射掃描電子顯微鏡 (FE-SEM) 63
3.2.4 超導量子干涉磁量儀 (MPMS-SQUID) 64
第四章 結果與討論 69
4.1 氧流量 6 sccm 膜厚 470 nm 之 TiO2 薄膜之性質 71
4.1.1 試片準備 71
4.1.2 結構分析 73
4.1.3 表面形貌分析 75
4.1.4 M-H 量測結果 76
4.2 氧流量 6 sccm 膜厚 60 nm 之 TiO2 薄膜之性質 78
4.2.1 試片準備 78
4.2.2 結構分析 80
4.2.3 表面形貌分析 82
4.2.4 M-H 量測結果 84
4.3 氧流量 7 sccm 膜厚 60 nm 之 TiO2 薄膜性質與穩定性 86
4.3.1 試片準備 86
4.3.2 結構分析 88
4.3.3 表面形貌分析 92
4.3.4 M-H 量測結果 95
4.4 樣品之穩定性與綜合討論 98
第五章 結論 105
參考文獻 107

[1] G. A. Prinz, "Magnetoelectronics applications," Journal of Magnetism and Magnetic Materials, vol. 200, pp. 57-68, 1999.
[2] G. A. Prinz, "Magnetoelectronics," Science, vol. 282, pp. 1660-1663, 1998.
[3] H. Ohno, "Making nonmagnetic semiconductors ferromagnetic," science, vol. 281, pp. 951-956, 1998.
[4] H. Munekata, H. Ohno, S. Von Molnar, A. Segmüller, L. Chang, and L. Esaki, "Diluted magnetic III-V semiconductors," Physical Review Letters, vol. 63, p. 1849, 1989.
[5] D. D. Awschalom, D. Loss, and N. Samarth, "Semiconductor Spintronics and Quantum Computation," 2002.
[6] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and e. D. Ferrand, "Zener model description of ferromagnetism in zinc-blende magnetic semiconductors," science, vol. 287, pp. 1019-1022, 2000.
[7] K. Ueda, H. Tabata, and T. Kawai, "Magnetic and electric properties of transition-metal-doped ZnO films," Applied Physics Letters, vol. 79, pp. 988-990, 2001.
[8] K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, et al., "Large magneto-optical effect in an oxide diluted magnetic semiconductor Zn 1− x Co x O," Applied Physics Letters, vol. 78, pp. 2700-2702, 2001.
[9] H.-J. Lee, S.-Y. Jeong, C. R. Cho, and C. H. Park, "Study of diluted magnetic semiconductor: Co-doped ZnO," Applied Physics Letters, vol. 81, pp. 4020-4022, 2002.
[10] S.-W. Lim, D.-K. Hwang, and J.-M. Myoung, "Observation of optical properties related to room-temperature ferromagnetism in co-sputtered Zn 1− x Co x O thin films," Solid state communications, vol. 125, pp. 231-235, 2003.
[11] S. Yang, A. Pakhomov, S. Hung, and C. Wong, "Room-temperature magnetism in Cr-doped AlN semiconductor films," Applied physics letters, vol. 81, pp. 2418-2420, 2002.
[12] H. Nguyen Hoa, S. Joe, W. Prellier, and H. Awatef, "Transparent Cr-doped SnO 2 thin films: ferromagnetism beyond room temperature with a giant magnetic moment," Journal of Physics: Condensed Matter, vol. 17, p. 1697, 2005.
[13] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, et al., "Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide," Science, vol. 291, pp. 854-856, 2001.
[14] S. Zhang, S. B. Ogale, W. Yu, X. Gao, T. Liu, S. Ghosh, et al., "Electronic Manifestation of Cation‐Vacancy‐Induced Magnetic Moments in a Transparent Oxide Semiconductor: Anatase Nb: TiO2," Advanced Materials, vol. 21, pp. 2282-2287, 2009.
[15] N. H. Hong, J. Sakai, and A. Hassini, "Ferromagnetism at room temperature with a large magnetic moment in anatase V-doped TiO2 thin films," Applied physics letters, vol. 84, pp. 2602-2604, 2004.
[16] M. Venkatesan, C. Fitzgerald, and J. Coey, "Thin films: unexpected magnetism in a dielectric oxide," Nature, vol. 430, pp. 630-630, 2004.
[17] N. H. Hong, J. Sakai, N. Poirot, and V. Brizé, "Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films," Physical Review B, vol. 73, p. 4, 2006.
[18] J. Coey, M. Venkatesan, and C. Fitzgerald, "Donor impurity band exchange in dilute ferromagnetic oxides," Nature materials, vol. 4, pp. 173-179, 2005.
[19] Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, "Vacancy-induced magnetism in ZnO thin films and nanowires," Physical Review B, vol. 77, p. 205411, 2008.
[20] D. Kim, J. Hong, Y. R. Park, and K. J. Kim, "The origin of oxygen vacancy induced ferromagnetism in undoped TiO2," Journal of Physics: Condensed Matter, vol. 21, p. 195405, 2009.
[21] M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, et al., "Defect-induced magnetic order in pure ZnO films," Physical Review B, vol. 80, p. 035331, 2009.
[22] J. H. Kim, H. Kim, D. Kim, Y. E. Ihm, and W. K. Choo, "Magnetic properties of epitaxially grown semiconducting Zn 1− x Co x O thin films by pulsed laser deposition," Journal of applied physics, vol. 92, pp. 6066-6071, 2002.
[23] T. Li, H. Qiu, P. Wu, M. Wang, and R. Ma, "Characteristics of Ni-doped ZnO: Al films grown on glass by direct current magnetron co-sputtering," Thin Solid Films, vol. 515, pp. 3905-3909, 2007.
[24] M. Yu, H. Qiu, X. Chen, H. Liu, and M. Wang, "Structural and physical properties of Ni and Al co-doped ZnO films grown on glass by direct current magnetron co-sputtering," Physica B: Condensed Matter, vol. 404, pp. 1829-1834, 2009.
[25] S. A. Chambers, T. Droubay, C. M. Wang, A. S. Lea, R. Farrow, L. Folks, et al., "Clusters and magnetism in epitaxial Co-doped TiO2 anatase," Applied Physics Letters, vol. 82, pp. 1257-1259, 2003.
[26] X. Liu, X. Zhu, J. Luo, F. Zeng, and F. Pan, "Grain boundary defects-mediated room temperature ferromagnetism in Co-doped ZnO film," Journal of Alloys and Compounds, vol. 482, pp. 224-228, 2009.
[27] G. Jayalakshmi, N. Gopalakrishnan, B. Panigrahi, and T. Balasubramanian, "Grain boundary defects induced room temperature ferromagnetism in V doped ZnO thin films," Crystal Research and Technology, vol. 46, pp. 1257-1264, 2011.
[28] B. B. Straumal, A. Myatiev, P. Straumal, A. Mazilkin, S. Protasova, E. Goering, et al., "Grain boundary layers in nanocrystalline ferromagnetic zinc oxide," JETP letters, vol. 92, pp. 396-400, 2010.
[29] B. Straumal, A. Mazilkin, S. Protasova, A. Myatiev, P. Straumal, E. Goering, et al., "Amorphous grain boundary layers in the ferromagnetic nanograined ZnO films," Thin Solid Films, vol. 520, pp. 1192-1194, 2011.
[30] J. DeLoach and C. Aita, "Thickness-dependent crystallinity of sputter-deposited titania," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 16, pp. 1963-1968, 1998.
[31] J. Hsieh, C. Liu, and Y. Ju, "Response characteristics of lead phthalocyanine gas sensor: effects of film thickness and crystal morphology," Thin Solid Films, vol. 322, pp. 98-103, 1998.
[32] M. Ohring, Materials science of thin films: Academic press, 2001.
[33] S. Mal, T.-H. Yang, C. Jin, S. Nori, J. Narayan, and J. Prater, "d0 Ferromagnetism in undoped ZnO thin films: Effect of thickness, interface and oxygen annealing," Scripta Materialia, vol. 65, pp. 1061-1064, 2011.
[34] M. Kapilashrami, J. Xu, V. Ström, K. V. Rao, and L. Belova, "Transition from ferromagnetism to diamagnetism in undoped ZnO thin films," Applied Physics Letters, vol. 95, p. 033104, 2009.
[35] 張適選, "濺鍍製備二氧化鈦薄膜之室溫鐵磁性質研究," 碩士, 材料科學與工程學系, 國立東華大學, 花蓮縣, 2014.
[36] 陳朱祥, "鈦金屬薄膜經熱處理後之室溫鐵磁性研究," 碩士, 材料科學與工程學系, 國立東華大學, 花蓮縣, 2014.
[37] W. Gilbert and E. Wright, De magnete, magneticisque corporibus, et de magno magnete tellure: physiologia noua, plurimis & argumentis, & experimentis demonstrata: excudebat Short, 1967.
[38] H. C. Ørsted, Selected Scientific Works of Hans Christian Orsted: Princeton University Press, 2014.
[39] C. Kittel, Introduction to solid state physics: Wiley, 2005.
[40] B. D. Cullity and C. D. Graham, Introduction to magnetic materials: John Wiley & Sons, 2011.
[41] R. C. O'handley, Modern magnetic materials: principles and applications: Wiley, 2000.
[42] W. Wu, Z. Wu, T. Yu, C. Jiang, and W. S. Kim, "Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications," Sci Technol Adv Mater, vol. 16, p. 023501, Apr 2015.
[43] M. Reis, Fundamentals of Magnetism: Elsevier Science, 2013.
[44] 田民波 and 校訂張勁燕, 材料學概論: 五南, 2015.
[45] 金重勳, 磁性技術手冊: 中華民國磁性技術協會, 2002.
[46] M. Elizaveta and H. Shaoying, "Magnetic Materials for Nuclear Magnetic Resonance and Magnetic Resonance Imaging," in Advances in Magnetic Materials, ed: CRC Press, 2017.
[47] P. J. Mohr, B. N. Taylor, and D. B. Newell, "CODATA recommended values of the fundamental physical constants: 2010 a," Journal of Physical and Chemical Reference Data, vol. 84, p. 1527, 2012.
[48] J. Liu, Z. Wu, Q. Tian, W. Wu, and X. Xiao, "Shape-controlled iron oxide nanocrystals: synthesis, magnetic properties and energy conversion applications," CrystEngComm, vol. 18, pp. 6303-6326, 2016.
[49] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, et al., "(Ga, Mn) As: a new diluted magnetic semiconductor based on GaAs," Applied Physics Letters, vol. 69, pp. 363-365, 1996.
[50] F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, "Transport properties and origin of ferromagnetism in (Ga, Mn) As," Physical Review B, vol. 57, p. R2037, 1998.
[51] H. Ohno, H. Munekata, T. Penney, S. Von Molnar, and L. Chang, "Magnetotransport properties of p-type (In, Mn) As diluted magnetic III-V semiconductors," Physical Review Letters, vol. 68, p. 2664, 1992.
[52] 許華書 and 黃榮俊, "以 3d 過渡金屬摻雜氧化物之稀磁性半導體研究," 物理雙月刊, vol. 26, pp. 599-606, 2004.
[53] T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, et al., "Magnetic properties of Mn-doped ZnO," Applied Physics Letters, vol. 78, pp. 958-960, 2001.
[54] Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, et al., "High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties," Applied Physics Letters, vol. 78, pp. 3824-3826, 2001.
[55] Y. Zheng, J. Boulliard, D. Demaille, Y. Bernard, and J. Pétroff, "Study of ZnO crystals and Zn 1− xMxO (M= Co, Mn) epilayers grown by pulsed laser deposition on," Journal of crystal growth, vol. 274, pp. 156-166, 2005.
[56] D. C. Kundaliya, S. Ogale, S. Lofland, S. Dhar, C. Metting, S. Shinde, et al., "On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn–Zn–O system," Nature materials, vol. 3, pp. 709-714, 2004.
[57] Y. Matsumoto, R. Takahashi, M. Murakami, T. Koida, X.-J. Fan, T. Hasegawa, et al., "Ferromagnetism in Co-doped TiO2 rutile thin films grown by laser molecular beam epitaxy," Japanese Journal of Applied Physics, vol. 40, p. L1204, 2001.
[58] R. Janisch, P. Gopal, and N. A. Spaldin, "Transition metal-doped TiO2 and ZnO—present status of the field," Journal of Physics: Condensed Matter, vol. 17, p. R657, 2005.
[59] N. H. Hong, J. Sakai, W. Prellier, and A. Ruyter, "Room temperature ferromagnetism in laser ablated transition-metal-doped TiO2 thin films on various types of substrates," Journal of Physics D: Applied Physics, vol. 38, p. 816, 2005.
[60] A. K. Rumaiz, B. Ali, A. Ceylan, M. Boggs, T. Beebe, and S. I. Shah, "Experimental studies on vacancy induced ferromagnetism in undoped TiO2," Solid State Communications, vol. 144, pp. 334-338, 2007.
[61] S. Zhou, E. Čižmár, K. Potzger, M. Krause, G. Talut, M. Helm, et al., "Origin of magnetic moments in defective TiO2 single crystals," Physical Review B, vol. 79, p. 113201, 2009.
[62] R. Singhal, S. Kumar, P. Kumari, Y. Xing, and E. Saitovitch, "Evidence of defect-induced ferromagnetism and its “switch” action in pristine bulk TiO2," Applied Physics Letters, vol. 98, p. 092510, 2011.
[63] P. Mohanty, N. Mishra, R. Choudhary, A. Banerjee, T. Shripathi, N. Lalla, et al., "Oxygen vacancy induced phase formation and room temperature ferromagnetism in undoped and Co-doped TiO2 thin films," Journal of Physics D: Applied Physics, vol. 45, p. 325301, 2012.
[64] B. Choudhury and A. Choudhury, "Room temperature ferromagnetism in defective TiO2 nanoparticles: Role of surface and grain boundary oxygen vacancies," Journal of Applied Physics, vol. 114, p. 203906, 2013.
[65] S. Batakrushna, P. K. Giri, D. Soumen, I. Kenji, and F. Minoru, "Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons," Journal of Physics D: Applied Physics, vol. 47, p. 235304, 2014.
[66] T. Wu, H. Sun, X. Hou, L. Liu, H. Zhang, and J. Zhang, "Significant room-temperature ferromagnetism in porous TiO2 thin films," Microporous and Mesoporous Materials, vol. 190, pp. 63-66, 2014.
[67] X. Wang, Y. Song, L. Tao, J. Feng, Y. Sui, J. Tang, et al., "Origin of ferromagnetism in aluminum-doped TiO2 thin films: theory and experiments," Applied Physics Letters, vol. 105, p. 262402, 2014.
[68] P. Mohanty, D. Kabiraj, R. K. Mandal, P. K. Kulriya, A. S. K. Sinha, and C. Rath, "Evidence of room temperature ferromagnetism in argon/oxygen annealed TiO2 thin films deposited by electron beam evaporation technique," Journal of Magnetism and Magnetic Materials, vol. 355, pp. 240-245, 2014.
[69] S. Wang, L. Pan, J.-J. Song, W. Mi, J.-J. Zou, L. Wang, et al., "Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance," Journal of the American Chemical Society, vol. 137, pp. 2975-2983, 2015.
[70] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. Rao, "Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides," Physical Review B, vol. 74, p. 161306, 2006.
[71] J. M. D. Coey, M. Venkatesan, P. Stamenov, C. Fitzgerald, and L. Dorneles, "Magnetism in hafnium dioxide," Physical Review B, vol. 72, p. 024450, 2005.
[72] S. D. Yoon, Y. Chen, A. Yang, T. L. Goodrich, X. Zuo, D. A. Arena, et al., "Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2−δ films," Journal of Physics: Condensed Matter, vol. 18, p. L355, 2006.
[73] Z. Zhou, H. Wang, and Z. Yang, "Intrinsic defect-mediated magnetism in Fe–N codoped TiO2," Journal of Alloys and Compounds, vol. 657, pp. 372-378, 2016.
[74] Y. Liu, S. Feng, Z. Li, L. Zhang, G. Wang, W. Chen, et al., "Oxygen vacancy-related room temperature ferromagnetism in TiO2 nanohole arrays," RSC Adv., vol. 6, pp. 57013-57018, 2016.
[75] A. Ermakov, M. Uimin, A. Korolev, A. Volegov, I. Byzov, N. Shchegoleva, et al., "Anomalous magnetism of the nanocrystalline oxide TiO2 surface," Physics of the Solid State, vol. 59, pp. 469-482, 2017.
[76] T. Wu, H. Sun, X. Hou, L. Liu, H. Zhang, and J. Zhang, "Significant room-temperature ferromagnetism in porous TiO 2 thin films," Microporous and Mesoporous Materials, vol. 190, pp. 63-66, 2014.
[77] X. Yu-Qian, S. Lei, X. Hao, H. Jing-Wen, Z. Yi-Bo, W. Yi, et al., "Magnetic Properties of Co-Doped TiO2 Films Grown on TiN Buffered Silicon Substrates," Chinese Physics Letters, vol. 31, p. 027501, 2014.
[78] M. Gratzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 11/15/print 2001.
[79] A. Hagfeldt and M. Graetzel, "Light-Induced Redox Reactions in Nanocrystalline Systems," Chemical Reviews, vol. 95, pp. 49-68, 1995/01/01 1995.
[80] S. M. Gupta and M. Tripathi, "A review of TiO 2 nanoparticles," Chinese Science Bulletin, vol. 56, p. 1639, 2011.
[81] K. Tanaka, M. F. V. Capule, and T. Hisanaga, "Effect of crystallinity of TiO2 on its photocatalytic action," Chemical Physics Letters, vol. 187, pp. 73-76, 1991/11/29/ 1991.
[82] J. Bai and B. Zhou, "Titanium dioxide nanomaterials for sensor applications," Chemical reviews, vol. 114, pp. 10131-10176, 2014.
[83] J. L. Murray and H. A. Wriedt, "The O−Ti (Oxygen-Titanium) system," Journal of Phase Equilibria, vol. 8, pp. 148-165, April 01 1987.
[84] H. Okamoto, "O-Ti (oxygen-titanium)," Journal of phase equilibria and diffusion, vol. 32, pp. 473-474, 2011.
[85] I. E. Grey, C. Li, I. C. Madsen, and G. Braunshausen, "TiO2-II. Ambient pressure preparation and structure refinement," Materials research bulletin, vol. 23, pp. 743-753, 1988.
[86] D. A. Hanaor and C. C. Sorrell, "Review of the anatase to rutile phase transformation," Journal of Materials science, vol. 46, pp. 855-874, 2011.
[87] X. Nie, S. Zhuo, G. Maeng, and K. Sohlberg, "Doping of TiO2 polymorphs for altered optical and photocatalytic properties," International Journal of Photoenergy, vol. 2009, 2009.
[88] W. Baur, "Atomabstande und Bindungswinkel im Brookit, TiO2," Acta Crystallographica, vol. 14, pp. 214-216, 1961.
[89] C. J. Howard, T. M. Sabine, and F. Dickson, "Structural and thermal parameters for rutile and anatase," Acta Crystallographica Section B, vol. 47, pp. 462-468, 1991.
[90] D. T. Cromer and K. Herrington, "The Structures of Anatase and Rutile," Journal of the American Chemical Society, vol. 77, pp. 4708-4709, 1955/09/01 1955.
[91] D. Dambournet, I. Belharouak, and K. Amine, "Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties†," Chemistry of Materials, vol. 22, pp. 1173-1179, 2010/02/09 2009.
[92] T. E. Weirich, M. Winterer, S. Seifried, H. Hahn, and H. Fuess, "Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2," Ultramicroscopy, vol. 81, pp. 263-270, 2000/04/01/ 2000.
[93] M. Landmann, E. Rauls, and W. G. Schmidt, "The electronic structure and optical response of rutile, anatase and brookite TiO2," J Phys Condens Matter, vol. 24, p. 195503, May 16 2012.
[94] 伍秀菁, 汪若文, and 林美吟, 真空技術與應用. 行政院國家科學委員會精密儀器發展中心: 財團法人國家實驗研究院儀器科技研究中心, 2001.
[95] M. Ohring, Materials Science of Thin Films: Deposition and Structure: Academic Press, 2002.
[96] K. Clarke and R. Gorley, "Primer," Primer-E, Plymouth, 2006.
[97] W. Wunderlich, "The atomistic structure of metal/ceramic interfaces is the key issue for developing better properties," Metals, vol. 4, pp. 410-427, 2014.
[98] R. W. Vook, "Structure and growth of thin films," International Metals Reviews, vol. 27, pp. 209-245, 1982/01/01 1982.
[99] E. Alfonso, J. Olaya, and G. Cubillos, "Thin film growth through sputtering technique and its applications," in Crystallization-Science and Technology, ed: InTech, 2012.
[100] J. M. E. Harper, J. J. Cuomo, R. J. Gambino, and H. R. Kaufman, "Modification of thin film properties by ion bombardment during deposition," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 7-8, pp. 886-892, 1985/03/01/ 1985.
[101] J. J. Cuomo and S. M. Rossnagel, "Property modification and synthesis by low energy particle bombardment concurrent with film growth," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 19-20, pp. 963-974, 1987/01/01/ 1987.
[102] R. Behrisch and W. Eckstein, Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies: Springer Berlin Heidelberg, 2007.
[103] J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings," Journal of Vacuum Science and Technology, vol. 11, pp. 666-670, 1974.
[104] A. Anders, "A structure zone diagram including plasma-based deposition and ion etching," Thin Solid Films, vol. 518, pp. 4087-4090, 2010/05/31/ 2010.
[105] 楊雲凱, "物理氣相沉積(PVD)介紹," 國家奈米元件實驗室奈米通訊, vol. 22, pp. 33-35, 2015.
[106] W. C. Röntgen, Über Eine Neue Art von Strahlen: Springer Berlin Heidelberg, 2013.
[107] Q. Luo and S. Yang, "Uncertainty of the X-ray Diffraction (XRD) sin2 ψ Technique in Measuring Residual Stresses of Physical Vapor Deposition (PVD) Hard Coatings," Coatings, vol. 7, p. 128, 2017.
[108] B. D. Cullity, Elements of X-ray Diffraction: Addison-Wesley Publishing Company, 1978.
[109] 林麗娟, "X 光繞射原理及其應用," 工業材料, p. 10, 1994.
[110] 鄧建龍, 姚潔宜, and 張茂男, "X光繞射分析在半導體工業上的應用," 國家奈米元件實驗室奈米通訊, vol. 15, pp. 6-14, 2008.
[111] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 2nd ed.: Prentice Hall, 2001.
[112] B. D. Josephson, "Possible new effects in superconductive tunnelling," Physics Letters, vol. 1, pp. 251-253, 1962/07/01/ 1962.
[113] A. Beiser, S. Mahajan, and S. R. Choudhury, Concepts of Modern Physics, 6th ed.: Tata McGraw-Hill, Higher Education, 2003.
[114] R. W. Simmonds, "Quantum interference heats up," Nature, vol. 492, p. 358, 12/19/online 2012.
[115] B. Straumal, S. Protasova, A. Mazilkin, B. Baretzky, A. Myatiev, P. Straumal, et al., "Amorphous interlayers between crystalline grains in ferromagnetic ZnO films," Materials Letters, vol. 71, pp. 21-24, 2012.
[116] N. Gopalakrishnan, L. Balakrishnan, A. Brindha, and G. Jayalakshmi, "Thickness and substrate orientation dependence of ferromagnetism in Mn doped ZnO thin films," Crystal Research and Technology, vol. 47, pp. 45-52, 2012.
[117] W. Wisniewski, K. Takano, Y. Takahashi, T. Fujiwara, and C. Rüssel, "Microstructure of transparent strontium fresnoite glass-ceramics," Scientific reports, vol. 5, 2015.
[118] 吳潘昇, "濺鍍製備 [TiO/TiO2] 週期性多層膜薄膜的結構與室溫鐵磁性質的關係," 碩士, 材料科學與工程學系, 國立東華大學, 花蓮縣, 2016.
[119] G. Kopnov, Z. Vager, and R. Naaman, "New magnetic properties of silicon/silicon oxide interfaces," Advanced Materials, vol. 19, pp. 925-928, 2007.
[120] C. Zhen, Y. Liu, Y. Zhang, L. Ma, C. Pan, and D. Hou, "Room-temperature ferromagnetism in Si–SiO2 composite film on glass substrate," Journal of Alloys and Compounds, vol. 503, pp. 6-9, 2010.
[121] P. J. Grace, M. Venkatesan, J. Alaria, J. M. D. Coey, G. Kopnov, and R. Naaman, "The origin of the magnetism of etched silicon," Advanced Materials, vol. 21, pp. 71-74, 2009.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *