帳號:guest(3.141.38.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:盧柏璁
作者(英文):Po-Tsung Lu
論文名稱:吸收層成分、緩衝層材料、窗層材料對CIGSS太陽能電池的元件表現之影響
論文名稱(英文):Effects of absorber composiations, buffers, and window layers on device performance of CIGSS solar cells
指導教授:黃家華
指導教授(英文):Chia-Hua Huang
口試委員:羅文雄
林育賢
口試委員(英文):Wen-Shiung Lour
Yu-Shyan Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610323026
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:33
關鍵詞:緩衝層吸收層窗層
關鍵詞(英文):CIGSS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏收藏:0
本論文是用模擬軟體SCAPS建立硒硫化銅銦鎵薄膜太陽能電池(Cu(In,Ga)(Se,S)2)元件模型,並用改變參數數值來探討CIGSS太陽能電池的效能。
本文探討硒化銅銦鎵薄膜(CIGS)經過表面硫化處理後,藉由改變不同硫的比例,來分析對CIGSS太能電池的影響,最後探討使用不同的緩衝層硫氧化鋅(Zn(O,OH,S))和硫化鎘(CdS)以及不同窗層材料摻硼氧化鋅(ZnO:B)和摻鋁氧化鋅(ZnO:Al) 對CIGSS太能電池元件效能的影響。
The simulation software SCAPS is used to construct the device model of Cu(In,Ga)(Se,S)2 and to discuss the performance of Cu(In,Ga)(Se,S)2 solar cells by changing the parameter values.
This article discuss the the impact of absorber layer prepared by sulfurization after selenization , analyze the impact of changing the different sulfur ratio on the Cu(In,Ga)(Se,S)2 solar cell, and finally discuss the use of different buffer layers of zinc sulfide oxide (Zn(O, OH, S)), cadmium sulfide (CdS), and different window layers with boron-doped zinc oxide (ZnO:B) and aluminum-doped zinc oxide (ZnO:Al) on the performance of Cu(In,Ga)(Se,S)2 solar cells.
第一章 緒論 1
1-1. 前言 1
1-2. 太陽能電池種類介紹 2
第二章 太陽能電池原理 5
2-1. 太陽光譜 5
2-2. 光學吸收係數 6
2-3. 硒化銅銦鎵薄膜太陽能電池結構 7
2-1-1. 鈉玻璃(Soda-lime)基板 7
2-1-2. 鉬(Mo)金屬背電極 7
2-1-3. 硒化銅銦鎵吸收層(absorber) 8
2-1-4. 硫化鎘(CdS)緩衝層 8
2-1-5. 透明導電層 8
第三章 硫硒化銅銦鎵太陽能電池基本模型的參數建立 9
3-1. 簡介 9
3-1-1. 硫與鎵含量變化對黃銅礦半導體的能帶寬和電子親和力的影響 9
3-2. 元件模擬參數設定 11
3-2-1. 上電極與背電極 11
3-2-2. 透明導電層:摻硼氧化鋅(ZnO:B) 11
3-2-3. 本質氧化鋅 (i-ZnO) 11
3-2-4. 緩衝層 (Zn(O.OH.S)) 12
3-2-5. 吸收層 (Cu(In1-xGax)(Se1-ySy)2) 13
3-2-6. Cu(In1-xGax)(Se1-ySy)2薄膜的能帶寬和電子親和力 13
3-2-7. 硫硒化鉬 Mo(S,Se) 17
3-3. 參數模擬的結果 21
第四章 不同緩衝層和窗層對硫硒化銅銦鎵太陽能電池的效能影響 25
4-1. 改變緩衝層:硫化鎘(CdS)的模擬參數 25
4-1-1. 緩衝層Zn(O,OH,S)和CdS相互比較 25
4-2. 改變窗層:摻鋁氧化鋅(ZnO:Al)的模擬參數 27
4-2-1. 窗層BZO和AZO相互比較 27
第五章 結論 29
參考文獻 31
[1] NREL Best Research-Cell Efficiencies Chart, https://www.nrel.gov/
[2] S.O. Kasap, Optoelectronics and Photonics: Principles and Practices, New Jersey, Prentice Hall 2001.
[3] Glynn, S., Repins, I., Burst, J., Beall, C., Bowers, K., & Mansfield, L. (2018). Selective excitation of window and buffer layers in chalcopyrite devices and modules. Thin Solid Films, 655, 70-76.
[4] Koida, T., Nishinaga, J., Higuchi, H., Kurokawa, A., Iioka, M., Kamikawa-Shimizu, Y., ... & Niki, S. (2016). Comparison of ZnO: B and ZnO: Al layers for Cu (In, Ga) Se2 submodules. Thin Solid Films, 614, 79-83.
[5] Frisk, C., Platzer-Björkman, C., Olsson, J., Szaniawski, P., Wätjen, J. T., Fjällström, V., ... & Edoff, M. (2014). Optimizing Ga-profiles for highly efficient Cu (In, Ga) Se2 thin film solar cells in simple and complex defect models. Journal of Physics D: Applied Physics, 47(48), 485104.
[6] Sozzi, G., Di Napoli, S., Menozzi, R., Carron, R., Avancini, E., Bissig, B., ... & Tiwari, A. N. (2016, June). Analysis of Ga grading in CIGS absorbers with different Cu content. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (pp. 2279-2282). IEEE.
[7] Pettersson, J., Platzer-Björkman, C., Zimmermann, U., & Edoff, M. (2011). Baseline model of graded-absorber Cu (In, Ga) Se2 solar cells applied to cells with Zn1− xMgxO buffer layers. Thin Solid Films, 519(21), 7476-7480.
[8] Murata, M., Hironiwa, D., Ashida, N., Chantana, J., Aoyagi, K., Kataoka, N., & Minemoto, T. (2014). Optimum bandgap profile analysis of Cu (In, Ga) Se2 solar cells with various defect densities by SCAPS. Japanese Journal of Applied Physics, 53(4S), 04ER14.
[9] Paul, S., Grover, S., Repins, I. L., Keyes, B. M., Contreras, M. A., Ramanathan, K., Noufi, R., … & Li, J. V. (2018). Analysis of back-contact interface recombination in thin-film solar cells. IEEE Journal of Photovoltaics, 8(3), 871-878.
[10] Platzer-Björkman, C., Törndahl, T., Abou-Ras, D., Malmström, J., Kessler, J., & Stolt, L. (2006). Zn (O, S) buffer layers by atomic layer deposition in Cu (In, Ga) Se 2 based thin film solar cells: Band alignment and sulfur gradient. Journal of Applied Physics, 100(4), 044506.
[11] Saadat, M., Moradi, M., & Zahedifar, M. (2016). Optimization of Zn (O, S)/(Zn, Mg) O buffer layer in Cu (In, Ga) Se 2 based photovoltaic cells. Journal of Materials Science: Materials in Electronics, 27(2), 1130-1133.
[12] Ramli, H., Rahim, S. K. A., Rahim, T. A. B. D., & Aminuddin, M. M. (2013). Optimization of zinc sulfide (ZnS) electron affinity in copper indium sulfide (CIS) based photovoltaic cell. Chalcogenide Letters, 10(6), 189-195.
[13] Bär, M., Bohne, W., Röhrich, J., Strub, E., Lindner, S., Lux-Steiner, M. C., ... & Karg, F. (2004). Determination of the band gap depth profile of the penternary Cu (In (1− X) Ga X)(SY Se (1− Y)) 2 chalcopyrite from its composition gradient. Journal of applied physics, 96(7), 3857-3860.
[14]Pettersson, J., Platzer-Björkman, C., Zimmermann, U., & Edoff, M. (2011). Baseline model of graded-absorber Cu (In, Ga) Se2 solar cells applied to cells with Zn1− xMgxO buffer layers. Thin Solid Films, 519(21), 7476-7480.
[15] Minemoto, T., Matsui, T., Takakura, H., Hamakawa, Y., Negami, T., Hashimoto, Y., ... & Kitagawa, M. (2001). Theoretical analysis of the e! ect of conduction band o! set of window/CIS layers on performance of CIS solar cells using device simulation. Solar Energy Materials & Solar Cells, 67(83), 88.
[16] Ashida, N., Murata, M., Hironiwa, D., Chantana, J., Uegaki, H., & Minemoto, T. (2015). Numerical analysis of Cu (In, Ga) Se2 solar cells with high defect density layer at back side of absorber. physica status solidi (c), 12(6), 638-642.
[17] Friedlmeier, T. M., Jackson, P., Bauer, A., Hariskos, D., Kiowski, O., Wuerz, R., & Powalla, M. (2015). Improved photocurrent in Cu (In, Ga) Se 2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE Journal of Photovoltaics, 5(5), 1487-1491.
[18] Sun, H. Y., Li, P. H., Xue, Y. M., Qiao, Z. X., & Sai, L. (2019). Effect of MoSe 2 on the performance of CIGS solar cells. Optoelectronics Letters, 15(6), 428-434.
[19] Li, W., Li, W., Feng, Y., & Yang, C. (2019). Numerical analysis of the back interface for high efficiency wide band gap chalcopyrite solar cells. Solar Energy, 180, 207-215.
[20] Ouédraogo, S., Kébré, M. B., Ngoupo, A. T., Oubda, D., Zougmoré, F., & Ndjaka, J. M. (2020). Required CIGS and CIGS/Mo Interface Properties for High-Efficiency Cu (In, Ga) Se 2 Based Solar Cells. Advances in Materials Physics and Chemistry, 10(07), 151.
[21] Wei, S. H., & Zunger, A. (1995). Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys. Journal of Applied Physics, 78(6), 3846-3856.
[22] W. Eisele, A. Ennaoui, P. Schubert-Bischoff, M. Giersig, C. Pettenkofer, J. Krauser, M. Lux-Steiner, S. Zweigart, F. Karg, Solar Energy Materials & Solar Cells 75 (2003) 17 – 26.
[23] Turcu, M., Kötschau, I. M., & Rau, U. (2002). Composition dependence of defect energies and band alignments in the Cu (In 1− x Ga x)(Se 1− y S y) 2 alloy system. Journal of Applied Physics, 91(3), 1391-1399.
[23] Gloeckler, M., Fahrenbruch, A. L., & Sites, J. R. (2003, May). Numerical modeling of CIGS and CdTe solar cells: setting the baseline. In 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of (Vol. 1, pp. 491-494). IEEE.
[24]Koida, T., Nishinaga, J., Higuchi, H., Kurokawa, A., Iioka, M., Kamikawa-Shimizu, Y., ... & Niki, S. (2016). Comparison of ZnO: B and ZnO: Al layers for Cu (In, Ga) Se2 submodules. Thin Solid Films, 614, 79-83.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *