帳號:guest(3.142.124.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:許郁函
作者(英文):Yu-Han Hsu
論文名稱:以微米級孔洞性材料結合質譜法捕捉與分析細菌
指導教授:何彥鵬
指導教授(英文):Yen-Peng Ho
口試委員:胡安仁
張凱誌
口試委員(英文):Anren Hu
Kai-Chih Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610412003
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:122
關鍵詞:微米級多孔洞材料整體柱細菌靜電吸附力
關鍵詞(英文):monolithbacteriaelectrostatic adhesion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
近年來食安問題越來越受到民眾以及政府機關的重視,因此能快速分析食品中致病菌成為我們重視的一環。本實驗合成三種微米級孔洞材料,第一種為修飾聚乙烯亞胺 (polyethylenimine, PEI) 的多孔性材料 (poly (GMA-EDMA@PEI)),經水浴加熱縮合後形成;第二種為修飾氧化鋯多孔矽材料,經高溫鍛燒製成;第三種則為氧化鋯微米級孔洞性材料,主體結構為氧化鋯,雖然結構沒有多孔矽材料堅固,但可以承受的pH值範圍較多孔矽材料大,以上材料利用不同蛋白質在等電點的差異,利用改變溶液pH值達到分離蛋白質的效果,優化且延伸對細菌的捕捉,以pH 7.6 Tris-HCl buffer當結合、清洗液,pH 11 ACN/NH4OH混合液作為洗脫液,以細胞計數的方式對大腸桿菌進行捕捉,poly (GMA-EDMA@PEI) 最大捕捉量為7.1×1010個細菌/mL,最低捕捉極限則為6.6個細菌/mL;ZrO2/ SiO2最大捕捉量為8.5×109個細菌/mL,最低捕捉極限則為1.3×102個細菌/mL;zirconia monolithic最大捕捉量為1.0×1010個細菌/mL,最低捕捉極限則為1.4×102個細菌/mL,經管住捕捉後的細菌以酵素水解,並結合質譜儀鑑定細菌種類,因此可應用於食品中微量細菌的檢測。
目錄
壹、緒論 1
1、前言 1
2、傳統鑑定微生物方法 2
2.1、直接鏡檢計數法 (Direct count) 3
2.2、菌落計數法 (Colony counting) 4
2.3、濾膜計數法 (Membrane filter method) 5
2.4、混濁度測定法 (Turbidity measurement) 6
3、大腸桿菌 7
4、金黃色葡萄球菌 10
5、整體柱 (Monolithic) 管柱 11
5.1、多孔洞材料 11
5.2、有機多孔洞材料的發展 13
5.3、微米級多孔洞材料與蛋白質作用力 16
5.4、微米級多孔洞材料在細菌捕捉之應用 17
6、質譜儀在細菌鑑定上之應用 20
7、研究動機 23
貳、研究內容 25
1、儀器與藥品 25
1.1、儀器 25
1.2、藥品 26
1.3、儀器使用方法 27
1.4、儀器參數與條件 29
1.5、資料庫搜尋參數設定 30
2、實驗步驟 31
2.1、微米級孔洞性材料整體柱合成與修飾 31
2.2、合成微米級孔洞性材料整體柱管柱修飾氧化鋯 (zirconium oxide-silica, ZrO2/SiO2) 36
2.3、合成氧化鋯微米級孔洞性材料整體管柱 (zirconia monolith) 40
2.4、細菌蛋白質萃取與消化 44
參、結果與討論 49
1、微米級多孔洞材料整體柱管柱修飾聚乙烯亞胺 (poly (GMA-EDMA@PEI)) 49
1.1、經修飾聚乙烯亞胺的整體柱的表面電位 49
1.2、蛋白質吸附實驗 50
1.3、poly (GMA-EDMA@PEI) 管柱合成條件 52
1.4、不同合成比例管柱捕捉大腸桿菌及金黃色葡萄球菌 55
1.5、poly (GMA-EDMA@PEI) 管柱SEM圖 57
1.6、洗脫液優化 59
1.7、管柱捕捉細菌使用次數測試 63
1.8、poly (GMA-EDMA@PEI) 管柱捕捉其他種細菌之效果 64
1.9、管柱吸附不同濃度大腸桿菌的捕捉率和洗脫率 66
1.10、管柱捕捉不同濃度混合菌液 68
2、微米級孔洞性材料整體柱管柱修飾氧化鋯 (ZrO2/SiO2) 70
2.1、ZrO2/SiO2管柱優化條件 70
2.2、ZrO2/SiO2管柱吸附不同濃度大腸桿菌的捕捉率和洗脫率 72
3、氧化鋯微米級孔洞性材料整體管柱 (zirconia monolithic) 73
3.1、Zirconia monolithic管柱優化條件 73
3.2、Zirconia monolithic管柱吸附不同濃度大腸桿菌的捕捉率和洗脫率 75
4、poly (GMA-EDMA@PEI) 管柱、ZrO2/SiO2管柱、zirconia monolithic管柱最大捕捉量及捕捉極限之比較 76
5、MALDI-TOF MS分析細菌的蛋白質水解產物 78
5.1、MALDI-TOF MS分析大腸桿菌的蛋白質水解產物 78
5.2、MALDI-TOF MS分析金黃色葡萄球菌的蛋白質水解產物 83
6、LC-MS/MS分析細菌的蛋白質水解產物 88
6.1、LC-MS/MS分析大腸桿菌的蛋白質水解產物 88
6.2、LC-MS/MS分析金黃色葡萄球菌的蛋白質水解產物 92
6.3、LC-MS/MS分析混合細菌的蛋白質水解產物 95
肆、結論 97
伍、參考文獻 99
陸、附錄 109
參考文獻
1. Zhou, C.; Hu, B.; Zhang, X.; Huang, S.; Shan, Y.; Ye, X., The value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in identifying clinically relevant bacteria: a comparison with automated microbiology system. Journal of Thoracic Disease 2014, 6 , 5, 545-552.
2. Peeters, B.; Herijgers, P.; Beuselinck, K.; Peetermans, W. E.; Herregods, M.-C.; Desmet, S.; Lagrou, K., Comparison of PCR-Electrospray Ionization Mass Spectrometry with 16S rRNA PCR and Amplicon Sequencing for Detection of Bacteria in Excised Heart Valves. Journal of Clinical Microbiology 2016, 54 , 11, 2825-2831.
3. Levett, P. N.; Morey, R. E.; Galloway, R. L.; Turner, D. E.; Steigerwalt, A. G.; Mayer, L. W., Detection of pathogenic leptospires by real-time quantitative PCR. Journal of Medical Microbiology 2005, 54 , 1, 45-49.
4. Xiao, D.; Zhang, C.; Zhang, H.; Li, X.; Jiang, X.; Zhang, J., A novel approach for differentiating pathogenic and non-pathogenic Leptospira based on molecular fingerprinting. Journal of Proteomics 2015, 119, 1-9.
5. Administration, U. S. F. a. D. 美. U. S. F. a. D. a.
6.http://www1.tf.edu.tw/top/department/food/%E9%A3%9F%E5%93%81%E7%B3%BB%E7%B6%B2%E9%A0%81/teacher&research/%E9%99%B3%E5%A7%BF%E5%88%A9%E8%80%81%E5%B8%AB/lesson01/04%E5%BE%AE%E7%94%9F%E7%89%A9%E7%9A%84%E7%94%9F%E9%95%B7.pdf.
7. Matsunaga, T.; Okochi, M.; Nakasono, S., Direct Count of Bacteria Using Fluorescent Dyes: Application to Assessment of Electrochemical Disinfection. Analytical Chemistry 1995, 67 , 24, 4487-4490.
8. Ferrari, A.; Lombardi, S.; Signoroni, A., Bacterial colony counting with Convolutional Neural Networks in Digital Microbiology Imaging. Pattern Recognition 2017, 61, 629-640.
9. Sartory, D. P.; Gu, H.; Chen, C.-M., Comparison of a novel MPN method against the yeast extract agar (YEA) pour plate method for the enumeration of heterotrophic bacteria from drinking water. Water Research 2008, 42 , 13, 3489-3497.
10. Cormier, J.; Janes, M., A double layer plaque assay using spread plate technique for enumeration of bacteriophage MS2. Journal of Virological Methods 2014, 196, 86-92.
11. Habash, M.; Johns, R., Comparison study of membrane filtration direct count and an automated coliform and Escherichia coli detection system for on-site water quality testing. Journal of Microbiological Methods 2009, 79 , 1, 128-130.
12. Fotadar, U.; Zaveloff, P.; Terracio, L., Growth of Escherichia coli at elevated temperatures. Journal of Basic Microbiology 2005, 45 , 5, 403-404.
13. Bentley, R.; Meganathan, R., Biosynthesis of vitamin K , menaquinone in bacteria. Microbiological Reviews 1982, 46 , 3, 241-280.
14. 衛生福利部疾病管制署.
15. 衛生福利部食品藥物管理署.
16. Xu, J. G.; Cheng, B. Q.; Wu, Y. P.; Huang, L. B.; Lai, X. H.; Liu, B. Y.; Lo, X. Z.; Li, H. F., Adherence Patterns and DNA Probe Types of Escherichia coli Isolated from Diarrheal Patients in China. Microbiology and Immunology 1996, 40 , 2, 89-97.
17. Nara, J. M.; Pimenta, D. C.; Abe, C. M.; Abreu, P. A. E.; Moraes, C. T. P.; Freitas, N. C.; Elias, W. P.; Piazza, R. M. F., Low-molecular mass comparative proteome of four atypical enteropathogenic Escherichia coli isolates showing different adherence patterns. Comparative Immunology, Microbiology and Infectious Diseases 2012, 35 , 6, 539-549.
18. Bertin, Y.; Girardeau, J. P.; Darfeuille-Michaud, A.; Contrepois, M., Characterization of 20K fimbria, a new adhesin of septicemic and diarrhea-associated Escherichia coli strains, that belongs to a family of adhesins with N-acetyl-D-glucosamine recognition. Infection and Immunity 1996, 64 , 1, 332-342.
19. Rundlöf, T.; Weintraub, A.; Widmalm, G., Structural studies of the enteroinvasive Escherichia coli , EIEC O28 O-antigenic polysaccharide. Carbohydrate Research 1996, 291, 127-139.
20. Scaletsky, I. C. A.; Fabbricotti, S. H.; Aranda, K. R.; Morais, M. B.; Fagundes-Neto, U., Comparison of DNA Hybridization and PCR Assays for Detection of Putative Pathogenic Enteroadherent Escherichia coli. Journal of Clinical Microbiology 2002, 40 , 4, 1254-1258.
21. Germani, Y.; Bégaud, E.; Duval, P.; Le Bouguénec, C., Prevalence of Enteropathogenic, Enteroaggregative., and Diffusely Adherent Escherichia coli among Isolates from Children with Diarrhea in New Caledonia. The Journal of Infectious Diseases 1996, 174 , 5, 1124-1126.
22. Verweyen, H. M.; Karch, H.; Allerberger, F.; Zimmerhackl, L. B., EnterohemorrhagicEscherichia coli , EHEC in Pediatric Hemolytic-Uremic Syndrome: A Prospedtive Study in Germany and Austria*. Infection 1999, 27 , 6, 341-347.
23. Harden, V. P.; Harris, J. O., THE ISOELECTRIC POINT OF BACTERIAL CELLS. Journal of Bacteriology 1953, 65 , 2, 198-202.
24. Bien, J.; Sokolova, O.; Bozko, P., Characterization of Virulence Factors of Staphylococcus aureus: Novel Function of Known Virulence Factors That Are Implicated in Activation of Airway Epithelial Proinflammatory Response. Journal of Pathogens 2011, 2011, 13.
25. Kaneko, J.; Kamio, Y., Bacterial Two-component and Hetero-heptameric Pore-forming Cytolytic Toxins: Structures, Pore-forming Mechanism, and Organization of the Genes. Bioscience, Biotechnology, and Biochemistry 2004, 68 , 5, 981-1003.
26. Foster, T. J., Immune evasion by staphylococci. Nat Rev Micro 2005, 3 , 12, 948-958.
27. Zou, H.; Huang, X.; Ye, M.; Luo, Q., Monolithic stationary phases for liquid chromatography and capillary electrochromatography. Journal of Chromatography A 2002, 954 , 1–2, 5-32.
28. Vlakh, E. G.; Tennikova, T. B., Applications of polymethacrylate-based monoliths in high-performance liquid chromatography. Journal of Chromatography A 2009, 1216 , 13, 2637-2650.
29. Inoue, H.; Yamanaka, K.; Yoshida, A.; Aoki, T.; Teraguchi, M.; Kaneko, T., Synthesis and cation exchange properties of a new porous cation exchange resin having an open-celled monolith structure. Polymer 2004, 45 , 1, 3-7.
30. Cabrera, K.; Wieland, G.; Lubda, D.; Nakanishi, K.; Soga, N.; Minakuchi, H.; Unger, K. K., SilicaROD™ — A new challenge in fast high-performance liquid chromatography separations. TrAC Trends in Analytical Chemistry 1998, 17 , 1, 50-53.
31. Holland, B. T.; Blanford, C. F.; Do, T.; Stein, A., Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites. Chemistry of Materials 1999, 11 , 3, 795-805.
32. Radu, D. R.; Pizzi, N. A.; Lai, C.-Y., Functionalized stellate macroporous silica nanospheres for CO2 mitigation. Journal of Materials Science 2016, 51 , 23, 10632-10640.
33. Lloyd, L. L., Rigid macroporous copolymers as stationary phases in high-performance liquid chromatography. Journal of Chromatography A 1991, 544, 201-217.
34. Mohabbati, S.; Hjerten, S.; Westerlund, D., Studies on the analytical performance of a non-covalent coating with N,N-didodecyl-N,N-dimethylammonium bromide for separation of basic proteins by capillary electrophoresis in acidic buffers in 25- and 50-mu m capillaries. Analytical and Bioanalytical Chemistry 2008, 390 , 2, 667-678.
35. Mohabbati, S.; Westerlund, D., Improved properties of the non-covalent coating with N,N-didodecyl-N, N-dimethylammonium bromide for the separation of basic proteins by capillary electrophoresis with acidic buffers in 25 μm capillaries. Journal of Chromatography A 2006, 1121 , 1, 32-39.
36. Svec, F.; Frechet, J. M. J., Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Analytical Chemistry 1992, 64 , 7, 820-822.
37. Svec, F.; Frechet, J. M., Modified poly, glycidyl methacrylate-co-ethylene dimethacrylate continuous rod columns for preparative-scale ion-exchange chromatography of proteins. Journal of chromatography. A 1995, 702 , 1-2, 89-95.
38. Wang, Q. C.; Svec, F.; Frechet, J. M. J., Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography. Analytical Chemistry 1993, 65 , 17, 2243-2248.
39. Svec, F., Stellan Hjertén’s contribution to the development of monolithic stationary phases. Electrophoresis 2008, 29 , 8, 1593-1603.
40. Hjertén, S.; Kunquan, Y.; Liao, J.-l., The design of agarose beds for high-performance hydrophobic-interaction chromatography and ion-exchange chromatography which show increasing resolution with increasing flow rate. Makromolekulare Chemie. Macromolecular Symposia 1988, 17 , 1, 349-357.
41. Hjertén, S., Standard and Capillary Chromatography, Including Electrochromatography, on Continuous Polymer Beds , Monoliths, Based on Water-Soluble Monomers. Industrial & Engineering Chemistry Research 1999, 38 , 4, 1205-1214.
42. Hjertén, S.; Liao, J.-l., High-performance liquid chromatography of proteins on compressed, non-porous agarose beads. Journal of Chromatography A 1988, 457, 165-174.
43. Liao, J.-L.; Hjertén, S., High-performance liquid chromatography of proteins on compressed, non-porous agarose beads. Journal of Chromatography A 1988, 457, 175-182.
44. Zhang, M.; Carroll, C.; Chan, A., The Software-Oriented Stream Cipher SSC2. In Fast Software Encryption: 7th International Workshop, FSE 2000 New York, NY, USA, April 10–12, 2000 Proceedings, Goos, G.; Hartmanis, J.; van Leeuwen, J.; Schneier, B., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2001; pp 31-48.
45. Krenkova, J.; Gargano, A.; Lacher, N. A.; Schneiderheinze, J. M.; Svec, F., High binding capacity surface grafted monolithic columns for cation exchange chromatography of proteins and peptides. Journal of Chromatography A 2009, 1216 , 40, 6824-6830.
46. Wang, Q. C.; Švec, F.; Fréchet, J. M. J., Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly , styrene-co-divinylbenzene. Journal of Chromatography A 1994, 669 , 1, 230-235.
47. Luo, Q.; Zou, H.; Xiao, X.; Guo, Z.; Kong, L.; Mao, X., Chromatographic separation of proteins on metal immobilized iminodiacetic acid-bound molded monolithic rods of macroporous poly, glycidyl methacrylate–co-ethylene dimethacrylate. Journal of Chromatography A 2001, 926 , 2, 255-264.
48. Zeng, C.-M.; Liao, J.-L.; Nakazato, K. i.; Hjertén, S., Hydrophobic-interaction chromatography of proteins on continuous beds derivatized with isopropyl groups. Journal of Chromatography A 1996, 753 , 2, 227-234.
49. Lämmerhofer, M.; Peters, E. C.; Yu, C.; Svec, F.; Fréchet, J. M. J.; Lindner, W., Chiral Monolithic Columns for Enantioselective Capillary Electrochromatography Prepared by Copolymerization of a Monomer with Quinidine Functionality. 1. Optimization of Polymerization Conditions, Porous Properties, and Chemistry of the Stationary Phase. Analytical Chemistry 2000, 72 , 19, 4614-4622.
50. Lin, J.; Lin, J.; Lin, X.; Xie, Z., Preparation of a mixed-mode hydrophilic interaction/anion-exchange polymeric monolithic stationary phase for capillary liquid chromatography of polar analytes. Journal of Chromatography A 2009, 1216 , 5, 801-806.
51. Chen, M.-L.; Zhang, J.; Zhang, Z.; Yuan, B.-F.; Yu, Q.-W.; Feng, Y.-Q., Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on “thiol-ene” click chemistry. Journal of Chromatography A 2013, 1284, 118-125.
52. Chen, Y.; Deng, N.; Wu, C.; Liang, Y.; Jiang, B.; Yang, K.; Liang, Z.; Zhang, L.; Zhang, Y., Aptamer functionalized hydrophilic polymer monolith with gold nanoparticles modification for the sensitive detection of human α-thrombin. Talanta 2016, 154, 555-559.
53. Liu, W.; Qi, J.; Yan, L.; Jia, Q.; Yu, C., Application of poly, butyl methacrylate-co-ethylene glycol dimethacrylate monolith microextraction coupled with high performance liquid chromatography to the determination of polycyclic aromatic hydrocarbons in smoked meat products. Journal of Chromatography B 2011, 879 , 28, 3012-3016.
54. Lei, W.; Zhang, L.-Y.; Wan, L.; Shi, B.-F.; Wang, Y.-Q.; Zhang, W.-B., Hybrid monolithic columns with nanoparticles incorporated for capillary electrochromatography. Journal of Chromatography A 2012, 1239, 64-71.
55. Aydoğan, C., A new anion-exchange/hydrophobic monolith as stationary phase for nano liquid chromatography of small organic molecules and inorganic anions. Journal of Chromatography A 2015, 1392, 63-68.
56. Moravcová, D.; Carrasco-Correa, E. J.; Planeta, J.; Lämmerhofer, M.; Wiedmer, S. K., Phosphatidylcholine covalently linked to a methacrylate-based monolith as a biomimetic stationary phase for capillary liquid chromatography. Journal of Chromatography A 2015, 1402, 27-35.
57. Wang, X.; Li, X.; Jiang, X.; Dong, P.; Liu, H.; Bai, L.; Yan, H., Preparation of a poly, styrene-co-DPHA-co-EDMA monolith and its application for the separation of small molecules and biomacromolecules by HPLC. Talanta 2017, 165, 339-345.
58. Hirota, N.; Kumaki, Y.; Narita, T.; Gong, J. P.; Osada, Y., Effect of Charge on Protein Diffusion in Hydrogels. The Journal of Physical Chemistry B 2000, 104 , 42, 9898-9903.
59. Dainiak, M. B.; Galaev, I. Y.; Mattiasson, B., Affinity cryogel monoliths for screening for optimal separation conditions and chromatographic separation of cells. Journal of Chromatography A 2006, 1123 , 2, 145-150.
60. Dainiak, M. B.; Kumar, A.; Galaev, I. Y.; Mattiasson, B., Detachment of affinity-captured bioparticles by elastic deformation of a macroporous hydrogel. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 , 4, 849-854.
61. Peskoller, C.; Niessner, R.; Seidel, M., Development of an epoxy-based monolith used for the affinity capturing of Eschericha coli bacteria. Journal of Chromatography A 2009, 1216 , 18, 3794-3801.
62. Buszewski, B.; Szumski, M.; Kłodzińska, E.; Jarmalavičienė, R.; Maruška, A., Migration of bacteria through a monolith. Journal of Chromatography A 2009, 1216 , 33, 6146-6150.
63. Ott, S.; Niessner, R.; Seidel, M., Preparation of epoxy-based macroporous monolithic columns for the fast and efficient immunofiltration of Staphylococcus aureus. Journal of Separation Science 2011, 34 , 16-17, 2181-2192.
64. Wunderlich, A.; Torggler, C.; Elsässer, D.; Lück, C.; Niessner, R.; Seidel, M., Rapid quantification method for Legionella pneumophila in surface water. Analytical and Bioanalytical Chemistry 2016, 408 , 9, 2203-2213.
65. Naikoo, G. A.; Thomas, M.; Anis Ganaie, M.; Sheikh, M. U. D.; Bano, M.; Hassan, I. U.; Khan, F., Hierarchically macroporous silver monoliths using Pluronic F127: Facile synthesis, characterization and its application as an efficient biomaterial for pathogens. Journal of Saudi Chemical Society 2016, 20 , 2, 237-244.
66. Anhalt, J. P.; Fenselau, C., Identification of bacteria using mass spectrometry. Analytical Chemistry 1975, 47 , 2, 219-225.
67. Hiraoka, K.; Kudaka, I., Electrospray interface for liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry 1990, 4 , 12, 519-526.
68. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 1988, 2 , 8, 151-153.
69. Kelleher, N. L.; Lin, H. Y.; Valaskovic, G. A.; Aaserud, D. J.; Fridriksson, E. K.; McLafferty, F. W., Top Down versus Bottom Up Protein Characterization by Tandem High-Resolution Mass Spectrometry. Journal of the American Chemical Society 1999, 121 , 4, 806-812.
70. Henzel, W. J.; Billeci, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C.; Watanabe, C., Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proceedings of the National Academy of Sciences of the United States of America 1993, 90 , 11, 5011-5015.
71. Eng, J. K.; McCormack, A. L.; Yates, J. R., An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 1994, 5 , 11, 976-989.
72. Cain, T. C.; Lubman, D. M.; Weber, W. J.; Vertes, A., Differentiation of bacteria using protein profiles from matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 1994, 8 , 12, 1026-1030.
73. Lay, J. O., MALDI-TOF mass spectrometry of bacteria*. Mass Spectrometry Reviews 2001, 20 , 4, 172-194.
74. Hu, A.; Tsai, P.-J.; Ho, Y.-P., Identification of Microbial Mixtures by Capillary Electrophoresis/Selective Tandem Mass Spectrometry. Analytical Chemistry 2005, 77 , 5, 1488-1495.
75. van Veen, S. Q.; Claas, E. C. J.; Kuijper, E. J., High-Throughput Identification of Bacteria and Yeast by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Conventional Medical Microbiology Laboratories. Journal of Clinical Microbiology 2010, 48 , 3, 900-907.
76. Kassim, A.; Pflüger, V.; Premji, Z.; Daubenberger, C.; Revathi, G., Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , MALDI-TOF MS and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiology 2017, 17, 128.
77. Ziegler, D.; Pothier, J. F.; Ardley, J.; Fossou, R. K.; Pflüger, V.; de Meyer, S.; Vogel, G.; Tonolla, M.; Howieson, J.; Reeve, W.; Perret, X., Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Applied Microbiology and Biotechnology 2015, 99 , 13, 5547-5562.
78. 陳裕瑋. 影像應於於血球計數盤上的細胞計數. 2012.
79. Cottrell, J. S.; London, U., Probability-based protein identification by searching sequence databases using mass spectrometry data. electrophoresis 1999, 20 , 18, 3551-3567.
80. Boeckmann, B.; Bairoch, A.; Apweiler, R.; Blatter, M.-C.; Estreicher, A.; Gasteiger, E.; Martin, M. J.; Michoud, K.; O'Donovan, C.; Phan, I.; Pilbout, S.; Schneider, M., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 2003, 31 , 1, 365-370.
81. Levitsky, L. I.; Ivanov, M. V.; Lobas, A. A.; Gorshkov, M. V., Unbiased False Discovery Rate Estimation for Shotgun Proteomics Based on the Target-Decoy Approach. Journal of Proteome Research 2017, 16 , 2, 393-397.
82. Yao, C.; Qi, L.; Jia, H.; Xin, P.; Yang, G.; Chen, Y., A novel glycidyl methacrylate-based monolith with sub-micron skeletons and well-defined macropores. Journal of Materials Chemistry 2009, 19 , 6, 767-772.
83. Jiang, H.-P.; Chu, J.-M.; Lan, M.-D.; Liu, P.; Yang, N.; Zheng, F.; Yuan, B.-F.; Feng, Y.-Q., Comprehensive profiling of ribonucleosides modification by affinity zirconium oxide-silica composite monolithic column online solid–phase microextraction – Mass spectrometry analysis. Journal of Chromatography A 2016, 1462, 90-99.
84. Kumar, A. P.; Park, J. H., Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography. Journal of Chromatography A 2010, 1217 , 26, 4494-4500.
85. Xiancheng, Z.; Xiaonan, C.; Ziming, Q. I. N.; Qian, W.; Ganzuo, L. I., THE ALKALINE HYDROLYSIS OF ETHYL ACETATE AND ETHYL PROPIONATE IN SINGLE AND MIXED MICELLAR SOLUTIONS. Journal of Dispersion Science and Technology 1996, 17 , 3, 339-348.
86. Lawrence, M. J., Surfactant systems: their use in drug delivery. Chemical Society Reviews 1994, 23, 6, 417-424.
87. Liu, K.; Wen, Z.; Li, N.; Yang, W.; Hu, L.; Wang, J.; Yin, Z.; Dong, X.; Li, J., Purification and concentration of mycobacteriophage D29 using monolithic chromatographic columns. Journal of Virological Methods 2012, 186, 1, 7-13.
88. Serrano, D. P.; García, R. A.; Vicente, G.; Linares, M.; Procházková, D.; Čejka, J., Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. Journal of Catalysis 2011, 279, 2, 366-380.
89. 余哲瑋. 以液相層析串聯質譜法結合氧化鋯磁性奈米粒子鑑定食品中的致病菌. 國立東華大學, 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *