帳號:guest(18.119.117.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:顏瑞庭
作者(英文):Jui-Ting Yen
論文名稱:利用Hierarchical Support Vector Regression預測正辛醇 - 水分配係數
論文名稱(英文):In Silico Prediction of n-Octanol-Water Partition Coefficient by Hierarchical Support Vector Regression
指導教授:梁剛荐
指導教授(英文):Max K. Leong
口試委員:翁慶豐
傅耀賢
口試委員(英文):Ching-Feng Weng
Yaw-Syan Fu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610412013
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:254
關鍵詞:分配系數階層式支持向量回歸定量構效關係
關鍵詞(英文):Partition coefficientHierarchical support vector regressionQuantitative structure-activity relationship
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
Log P 是藥物開發的重要參數。藥物的親水性與其疏水性密切相關。通常 log P 的測量方法包括振盪方法,柱生成方法,高效液相色譜方法和電化學方法。搖瓶法的優點在於它簡單,具有廣泛的適用物質,並且在測量之前不需要材料結構。缺點需要是(需要至少24小時才能實現分配平衡)和大量樣品。相反,高效液相色譜的優點是快速的(每個樣品5-20分鐘)。缺點是 log P 的值是通過線性回歸確定的,因此具有相似結構的幾種化合物必須具有已知的 log P 值。基於從文獻(1995)收集的 log P 實驗數據,使用階層式支持向量回歸(HSVR)方案定量地生成計算機模型中的 log P 值。 HSVR預測在訓練集中的實驗中表現良好(n = 284, r2 = 0.87, qcv2 = 0.85, RMSE = 0.60,s = 0.36)和測試集(n = 71, r2 = 0.87, RMSE = 0.56,s = 0.31)和異常值(n = 15, r2 = 0.87, RMSE = 0.69,s = 0.35)。因此,可以斷言HSVR可以快速準確地預測藥物log P.
Log P is an important parameter for drug development. The hydrophilicity of a drug is closely related to its hydrophobicity. In general, the measurement methods of log P include an oscillation method, a column generation method, a high performance liquid chromatography method, and an electrochemical method. The advantage of the shake flask method is that it is simple, has a wide range of applicable substances, and does not require a material structure before measurement. Disadvantages need to be as long as it takes (at least 24 hours to achieve a distribution balance) and a large amount of sample. In contrast, the advantages of high performance liquid chromatography are fast (5-20 minutes per sample). The disadvantage is that the value of log P is determined by linear regression, so several compounds with similar structures must have known log P values. Based on the log P experimental data collected from the literature (1995), the log P values in the computer model were quantitatively generated using a hierarchical support vector regression (HSVR) scheme. The HSVR predictions performed well in experiments with those in the training set (n = 284, r2 = 0.87, qcv2 = 0.85, RMSE = 0.60,s = 0.36) and the test set (n = 71, r2 = 0.87, RMSE = 0.56,s = 0.31) and outliers (n = 15, r2 = 0.87, RMSE = 0.69,s = 0.35). Therefore, it can be asserted that HSVR can predict drug log P quickly and accurately.
謝辭 iii
摘要 v
ABSTRACT vii
TABLE OF CONTENTS ix
FIGURE xi
TABLE xiii
ABBREVIATIONS xv
1. Introduction 1
2. Material and method 3
2-1. Data collection 3
2-2. Dataset selection 3
2-3. Molecular descriptors 3
2-4. Descriptor selection 4
2-5. Support Vector Machine 5
2-6. Support Vector Regression 5
2-7. Hierarchical Support Vector Regression 6
2-8. Predictive evaluation 6
3. Result 11
3-1. Dataset selection 11
3-2. SVR models 11
3-3. HSVR 12
3-4. Predictive evaluations 14
3-5. Mock test 15
3-6. Comparison with previous models 15
4. Discussion 17
5. Conclusion 19
6. References 21
Andrés, Axel, et al.
2015 Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. Eur. J. Pharm. Sci. 76:181-191.
Atkinson, Hartley C., and Evan J. Begg
1988 Relationship between Human Milk Lipid-Ultrafiltrate and Octanol-Water Partition Coefficients. J. Pharm. Sci. 77(9):796-798.
Austin, Rupert P., Andrew M. Davis, and Carol N. Manners
1995 Partitioning of ionizing molecules between aqueous buffers and phospholipid vesicles. J. Pharm. Sci. 84(10):1180-1183.
Avery, Mitchell A., et al.
1995 Structure-Activity Relationships of the Antimalarial Agent Artemisinin. 2. Effect of Heteroatom Substitution at O-11: Synthesis and Bioassay of N-Alkyl-11-aza-9-desmethylartemisinins. J. Med. Chem. 38(26):5038-5044.
Bayat, Z., and J. Movaffagh
2010 Evaluation of the 1-octanol/water partition coefficient of nucleoside analogs via free energy estimated in quantum chemical calculations. Russ. J. Phys. Chem. A 84(13):2293-2299.
Besler, Brent H., Kenneth M. Merz Jr., and Peter A. Kollman
1990 Atomic charges derived from semiempirical methods. J. Comput. Chem. 11(4):431-439.
Breiman, Leo, and Philip Spector
1992 Submodel Selection and Evaluation in Regression. The X-Random Case. Int. Stat. Rev. 60(3):291-319.
Burges, Christopher J.C. %J Data Mining, and Knowledge Discovery
1998 A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 2(2):121-167.
Cappelli, Claudia Ileana, Emilio Benfenati, and Josep Cester
2015 Evaluation of QSAR models for predicting the partition coefficient (log P) of chemicals under the REACH regulation. Environmental Research 143, Part A:26-32.
Chen, Rena Zhanglei, Walter Z. Tang, and Mika Sillanpää
2016 Prediction of Log P of Halogenated Alkanes by Their ELUMO and Number of Chlorine and Carbon. Environ. Process. 3(1):73-91.
Cheng, Tiejun, et al.
2007 Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. Journal of Chemical Information and Modeling 47(6):2140-2148.
Chiou, Cary T., David W. Schmedding, and Milton Manes
2005 Improved Prediction of Octanol−Water Partition Coefficients from Liquid−Solute Water Solubilities and Molar Volumes. Environ. Sci. Technol. 39(22):8840-8846.
Chirico, Nicola, and Paola Gramatica
2011 Real External Predictivity of QSAR Models: How To Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient. J. Chem Inf. Model. 51(9):2320-2335.

2012 Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection. J. Chem. Inf. Model. 52(8):2044-2058.
Consonni, Viviana, Davide Ballabio, and Roberto Todeschini
2009 Comments on the Definition of the Q2 Parameter for QSAR Validation. J. Chem Inf. Model. 49(7):1669-1678.
Cortes, Corinna, and Vladimir %J Machine Learning Vapnik
1995 Support-vector networks. Mach. Learn. 20(3):273-297.
Danielsson, Lars-Go¨ran, and Yu-Hui Zhang
1996 Methods for determiningn-octanol-water partition constants. TrAC Trends. Anal. Chem. 15(4):188-196.
de Melo, Eduardo Borges , and Márcia Miguel Castro Ferreira
2009 Nonequivalent Effects of Diverse LogP Algorithms in Three QSAR Studies. QSAR Comb. Sci. 28(10):1156-1165.
Dearden, John C., and Gaynor M. Bresnen
1988 The Measurement of Partition Coefficients. Quant. Struct.-Act. Relat. 7(3):133-144.
Debnath, Asim Kumar, et al.
1991 Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34(2):786-797.
Ghose, Arup K., and Gordon M. Crippen
1986 Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure-Activity Relationships I. Partition Coefficients as a Measure of Hydrophobicity. J. Comput. Chem. 7(4):565.
Gnanadesikan, R., and J. R. Kettenring
1972 Robust Estimates, Residuals, and Outlier Detection with Multiresponse Data. Biometrics 28(1):81-124.
Golbraikh, Alexander, et al.
2003 Rational selection of training and test sets for the development of validated QSAR models. J. Comput.-Aided Mol. Des. 17(2):241-253.
Gramatica, Paola, and Alessandro Sangion
2016 A Historical Excursus on the Statistical Validation Parameters for QSAR Models: A Clarification Concerning Metrics and Terminology. J. Chem. Inf. Model. 56(6):1127-1131.
Hansch, C., A. Leo, and D. Hoekman
1995 Exploring QSAR: Hydrophobic, Electronic, and Steric Constants. Volume 2. Washington, DC: American Chemical Society.
Ivanciuc, Ovidiu
2007 Applications of Support Vector Machines in Chemistry. In Reviews in Computational Chemistry. Pp. 291-400.
Kettaneh, Nouna, Anders Berglund, and Svante Wold
2005 PCA and PLS with very large data sets. Computational Statistics & Data Analysis 48(1):69-85.
King, R. D., et al.
1996 Structure-activity relationships derived by machine learning: the use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proc. Natl. Acad. Sci. 93(1):438.
Klein, Markus, Lothar Erdinger, and Gernot Boche
2000 From mutagenic to non-mutagenic nitroarenes: effect of bulky alkyl substituents on the mutagenic activity of nitroaromatics in Salmonella typhimurium: Part II. Substituents far away from the nitro group. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 467(1):69-82.
Klopman, Gilles, and Linda D. Iroff
1981 Calculation of partition coefficients by the charge density method. J. Comput. Chem. 2(2):157-160.
Kril, Michael B., and Ho-Leung Fung
1990 Influence of hydrophobicity on the ion exchange selectivity coefficients for aromatic amines. J. Pharm. Sci. 79(5):440-443.
Leo, Albert, Corwin Hansch, and David Elkins
1971 Partition coefficients and their uses. Chem. Rev. 71(6):525-616.
Leong, Max K., Yen-Ming Chen, and Tzu-Hsien Chen
2009 Prediction of human cytochrome P450 2B6-substrate interactions using hierarchical support vector regression approach. J Comput Chem 30(12):1899-1909.
Leong, Max K., et al.
2010 Predicting Mutagenicity of Aromatic Amines by Various Machine Learning Approaches. Toxicol. Sci. 116(2):498-513.
Moriguchi, Ikuo, et al.
1992 Simple Method of Calculating Octanol/Water Partition Coefficient. CHEM. PHARM. BULL. 40(1):127-130.
Ojha, Probir Kumar, et al.
2011 Further exploring rm2 metrics for validation of QSPR models. Chemometrics Intell. Lab. Syst. 107(1):194-205.
Ranadive, Sunanda A., Andrew X. Chen, and Abu T. M. %J Pharmaceutical Research Serajuddin
1992 Relative Lipophilicities and Structural-Pharmacological Considerations of Various Angiotensin-Converting Enzyme (ACE) Inhibitors. Pharm. Res. 9(11):1480-1486.
Recanatini, M.
1992 Partition and distribution coefficients of aryloxypropanolamine β-adrenoceptor antagonists. J. Pharm. Pharmacol. 44(1):68-70.
Ritchie, Timothy J., and Simon J. F. Macdonald
2009 The impact of aromatic ring count on compound developability – are too many aromatic rings a liability in drug design? Drug Discovery Today 14(21):1011-1020.
Rostad, Colleen E., Wilfred E. Pereira, and Marc F. Hult
1985 Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system. Chemosphere 14(8):1023-1036.
Roy, Kunal, et al.
2012 Comparative Studies on Some Metrics for External Validation of QSPR Models. J. Chem Inf. Model. 52(2):396-408.
Sangster, James
1989 Octanol‐Water Partition Coefficients of Simple Organic Compounds. J. Phys. Chem. Ref. Data 18(3):1111-1229.
Schüürmann, Gerrit, et al.
2008 External Validation and Prediction Employing the Predictive Squared Correlation Coefficient — Test Set Activity Mean vs Training Set Activity Mean. J. Chem Inf. Model. 48(11):2140-2145.
Taft, R. W., et al.
1985 Solubility Properties in Polymers and Biological Media 5: An Analysis of the Physicochemical Properties Which Influence Octanol–Water Partition Coefficients of Aliphatic and Aromatic Solutes. J. Pharm. Sci. 74(8):807-814.
Topliss, John G., and Robert P. Edwards
1979 Chance factors in studies of quantitative structure-activity relationships. J. Med. Chem. 22(10):1238-1244.
Tropsha, Alexander
2010 Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inf. 29(6‐7):476-488.
Tropsha, Alexander, Paola Gramatica, and Vijay K. Gombar
2003 The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. 22(1):69-77.
Valkó, Klára
2004 Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. Journal of Chromatography A 1037(1):299-310.
Zou, J. W., et al.
2002 A Quantitative Structure-Property Relationship Analysis of logP for Disubstituted Benzenes. J. Phys. Chem. A 106(47):11550-11557.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用Pharmacophore Ensemble/Support Vector Machine方法預測ABCG2抑制劑結合親和力
2. 使用Hierarchical Support Vector Regression發展Quantiative Structure Activity Relationship模型預測芳香族硝基化合物的致突變
3. 使用Support Vector Machine發展 SVM-Pose/SVM-Score Ensemble Docking 應用於預測N-methyl-D-aspartate的生物 活性
4. 利用Hierarchical Support Vector Machine方法預測血腦障蔽的穿透能力
5. 利用Pharmacophore Ensemble/Support Vector Machine方法預測Estrogen Receptor Alpha結合親和力
6. 利用不同的MachineLearning的方法去預測血腦障壁的穿透能力
7. 利用不同MachineLearningApproaches預測芳香族胺在沙門氏菌TA100中致癌/致突變的機率
8. 利用PharmacophoreEnsemble/SupportVectorMachineApproach預測人類多重藥物傳送蛋白P-Glycoprotein的抑制活性
9. 利用PharmacophoreEnsemble/SupportVectorMachine方法預測人類PregnaneXReceptor的活性化
10. 利用階層式支持向量回歸法預測人體多藥轉運醣蛋白介導的外排率
11. 使用Hierarchical Support Vector Regression方法預測血腦屏障的滲透表面積乘積
12. 利用階層式支持向量回歸法預測空腸的滲透率
13. In Silico Prediction of n-Octanol–Water Partition Coefficient by Various Data Fusion Methods
14. In Silico Prediction of Caco-2 Permeability by Quantitative Structure Activity Relationship Modeling Based on Hierarchical Support Vector Regression
15. 使用Pharmacophore Ensemble/Support Vector Machine (PhE/SVM)模型來預測Breast Cancer Resistance Protein (BCRP/ABCG2)的抑制
 
* *