帳號:guest(3.15.141.155)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:黃偉恩
作者(英文):Wei-An Huang
論文名稱:利用螢光中孔洞二氧化矽奈米粒子快速篩檢抗藥性細菌及測定β-內醯胺酶之活性
指導教授:何彥鵬
指導教授(英文):Yen-Peng Ho
口試委員:張凱誌
江政剛
口試委員(英文):Kai-Chih Chang
Cheng-Kang Chiang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610412014
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:139
關鍵詞:螢光中孔洞二氧化矽奈米粒子β-內醯胺酶抗生素抗藥性
關鍵詞(英文):Fluorescent dye-doped mesoporous silica nanoparticlesβ-lactamasesAntibioticAntibiotic-resistant
相關次數:
  • 推薦推薦:2
  • 點閱點閱:39
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
本實驗以溶膠凝膠法 (sol-gel) 之合成方式,摻雜對環境酸鹼值敏感之螢光染劑,螢光異硫氰酸鹽 (fluorescein isothiocyanate, FITC) 製成螢光中孔洞二氧化矽奈米粒子 (pH-sensitive fluorescent dye-doped mesoporous silica nanoparticles, FSNPs)。此中孔洞奈米材料具有高表面積的優勢,可作為良好之藥物載體;本實驗利用β-內醯胺類抗生素,penicillin G作為裝載藥物,當penicillin G被β-內醯胺酶水解為青黴噻唑酸 (penicilloic acid) 使環境之酸性提升,導致螢光中孔洞二氧化矽奈米粒子上的螢光異硫氰酸鹽,在酸性條件下形成不具發光特性之酯類結構而產生螢光猝滅現象 (fluorescence quenching),並以此方式作為篩檢出抗藥性細菌存在之方法。此方法實際檢測25種臨床樣品最快可於一小時內得到檢測結果,且β-內醯胺酶之活性偵測極限最低可達7.8×10-4 U/mL,展現出此檢測方法應有潛力作為臨床診斷 (point-of care) 的工具,提供醫療人員抗生素藥物之選用參考,並預防抗生素藥物之濫用。
The major mechanism for antibiotic-resistant bacteria is the production of β-lactamases, which can catalyze the hydrolysis of β-Lactam antibiotics into penicilloic acid by breaking down the β-lactam ring, resulting in loss of the antibacterial activity of drug. Thus far, kinds of methods have been applied to detect β-Lactamases activity. But above all, the disadvantages of these techniques are labor intensive, time-consuming manipulation or requiring complex equipment and skilled worker. However, limit their use in clinical applications. As a result, an easy operating assay method, economic, reliable system for detecting β-lactamases can meet clinical testing requirements to achieve early screen and sensitive detection is highly required.

Here we present a simple, rapid, sensitive, universal, inexpensive screening method for the determination of β-lactamases activity of antibiotic-resistant bacteria, by designing a pH-sensitive fluorescent dye-doped mesoporous silica nanoparticles (FSNPs) encapsulated with a β-lactam antibiotic (penicillin G) as a substrate. Hydrolyzing of penicillin G can be catalyzed by β-lactamases to produce penicilloic acid, leading to a pH decrease in the microenvironment of FSNPs, which caused the pH-sensitive green fluorescent dye (fluorescein isothiocyanate, FITC) turned to a non-fluorescent product at the pH around 5.5. Therefore, we can assess the activity of β-lactamase by determining the quenching of fluorescence intensity at a given time. Currently, the most common method used in clinical of antimicrobial susceptibility testing requires 24-72 hours. Compare to the traditional method, our rapid, sensitive optical method can detect a broad spectrum of β-lactamases of clinically relevant samples at less than 1 hour. Moreover, the detection limit of β-lactamase activity was 7.8×10-4 U/mL, which was determined within 8 hours.
目錄
壹、緒論 1
1、前言 1
2、測定β-內醯胺酶之活性方法 1
2.1、抗菌敏感性測試 4
2.2、碘測定法 9
2.3、酸性測定法 9
2.4、β-內醯胺類酶底物顯色基團測定法 10
2.5、β-內醯胺類酶底物修飾螢光基團之螢光測定法 11
2.6、電化學生物感測器測定法 14
2.7、聚合酶連鎖反應測定法 15
2.8、質譜檢測法 16
2.9、金奈米粒子測定法 17
2.10、DNA適體與氧化石墨烯測定法 18
2.11、有機染劑/金屬離子錯合物偵測法 20
3、奈米材料簡介與發展 21
4、二氧化矽奈米材料的特性與應用 21
4.1、二氧化矽奈米材料之製備 22
4.1.1、水解反應 (hydrolysis) 22
4.1.2、縮合反應 (condensation) 23
4.1.3、聚合反應 (polymerization) 23
4.2、中孔洞二氧化矽奈米材料之簡介 24
4.3、界面活性劑之簡介 25
5、抗生素之抑菌機制 27
6、細菌之抗藥性 30
7、抗藥性細菌之介紹 32
7.1、鮑氏不動桿菌 33
7.2、克雷伯氏肺炎菌 33
7.3、大腸桿菌 34
8、研究動機 36
貳、研究內容 37
1、藥品與儀器 37
1.1、藥品 37
1.2、儀器 38
2、實驗方法 39
3、實驗步驟 40
3.1、螢光中孔洞二氧化矽奈米粒子之合成步驟 40
3.2、penicillin G之藥物裝載 42
3.3、螢光中孔洞二氧化矽奈米粒子之量子產率計算 43
3.4、螢光中孔洞二氧化矽奈米粒子之藥物裝載量計算 43
3.5、細菌樣品之製備 44
3.6、以螢光中孔洞二氧化矽奈米粒子檢測臨床細菌樣品 44
3.7、試片擴散法 (Disk diffusion test) 45
3.8、以螢光中孔洞二氧化矽奈米粒子測定β-內醯胺酶之活性 45
3.9、以酸性測定法檢測β-內醯胺酶 45
3.10、以β-內醯胺酶水解penicillin G 46
參、結果與討論 47
1、螢光中孔洞二氧化矽奈米粒子之合成 47
1.1、螢光染劑修飾量優化 47
1.2、螢光染劑修飾方法優化 48
2、螢光中孔洞二氧化矽奈米粒子之發光特性 51
3、以β-內醯胺酶水解penicillin G 53
4、螢光中孔洞二氧化矽奈米粒子之官能基鑑定 56
5、螢光中孔洞二氧化矽奈米粒子之SEM與TEM圖 58
6、以PEN G@FSNPs檢測β-lactamase 60
6.1、penicillin G之濃度選擇 61
6.2、螢光中孔洞二氧矽奈米粒子之penicillin G裝載量測定 62
6.3、決定PEN G@FSNPs檢測β-lactamase方法之用量 63
6.4、比較以藥物載體(PEN G@FSNPs, particle)與非藥物載體(non-particle)方式檢測β-lactamase方法之效果 66
6.5、比較以超音波震盪混合方式對PEN G@FSNPs檢測β-lactamase方法之影響 68
7、以Pen G@FSNPs檢測臨床細菌樣品 70
8、以螢光預測方法快速檢測β-lactamase 77
8.1、螢光預測方法之建立 77
9、比較螢光預測法與傳統酸性測定法檢測β-內醯胺酶之效果 81
10、比較本篇研究之檢測方法與其它相關研究之偵測極限 83
肆、結論 85
伍、參考文獻 87
陸、附錄 97
1. Elander, R. P., Industrial production of β-lactam antibiotics. Applied Microbiology and Biotechnology 2003, 61 (5), 385-392.
2. Bebrone, C.; Moali, C.; Mahy, F.; Rival, S.; Docquier, J. D.; Rossolini, G. M.; Fastrez, J.; Pratt, R. F.; Frère, J.-M.; Galleni, M., CENTA as a Chromogenic Substrate for Studying β-Lactamases. Antimicrobial Agents and Chemotherapy 2001, 45 (6), 1868-1871.
3. Neu, H. C., Relation of structural properties of beta-lactam antibiotics to antibacterial activity. The American Journal of Medicine 1985, 79 (2, Supplement 1), 2-13.
4. Kong, K.-F.; Schneper, L.; Mathee, K., Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 2010, 118 (1), 1-36.
5. Kittiloespaisan, E.; Takashima, I.; Kiatpathomchai, W.; Wongkongkatep, J.; Ojida, A., Coordination ligand exchange of a xanthene probe-Ce(III) complex for selective fluorescence sensing of inorganic pyrophosphate. Chemical Communications 2014, 50 (17), 2126-2128.
6. Bush, K.; Jacoby, G. A.; Medeiros, A. A., A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995, 39 (6), 1211-33.
7. Frère, J.-M., Beta-lactamases and bacterial resistance to antibiotics. Molecular Microbiology 1995, 16 (3), 385-395.
8. Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L., Drugs for bad bugs: confronting the challenge of antibacterial discovery. Nature Rev. Drug Discov. 2007, 6, 29-40.
9. WHO, Antimicrobial resistance: global report on surveillance 2014. 2014.
10. Knowles, J. R., Penicillin resistance: the chemistry of .beta.-lactamase inhibition. Accounts of Chemical Research 1985, 18 (4), 97-104.
11. Livermore, D. M., beta-Lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews 1995, 8 (4), 557-584.
12. Bush, K., Bench-to-bedside review: The role of β-lactamases in antibiotic-resistant Gram-negative infections. Critical Care 2010, 14 (3), 224.
13. Kiehlbauch, J. A.; Hannett, G. E.; Salfinger, M.; Archinal, W.; Monserrat, C.; Carlyn, C., Use of the National Committee for Clinical Laboratory Standards Guidelines for Disk Diffusion Susceptibility Testing in New York State Laboratories. Journal of Clinical Microbiology 2000, 38 (9), 3341-3348.
14. Cosgrove, S. E., The Relationship between Antimicrobial Resistance and Patient Outcomes: Mortality, Length of Hospital Stay, and Health Care Costs. Clinical Infectious Diseases 2006, 42 (Supplement_2), S82-S89.
15. Rello, J., Importance of appropriate initial antibiotic therapy and de-escalation in the treatment of nosocomial pneumonia. European Respiratory Review 2007, 16 (103), 33-39.
16. Wormser, G. P.; Bergman, M. M., The Antibiotic Paradox: How the Misuse of Antibiotics Destroys Their Curative Powers, 2nd Edition By Stuart B. Levy Cambridge, Massachusetts: Perseus Publishing, 2002. 376 pp., illustrated. $17.50 (paper). Clinical Infectious Diseases 2003, 36 (2), 238-238.
17. Deasy, J., Antibiotic resistance: The ongoing challenge for effective drug therapy. Journal of the American Academy of Physician Assistants 2009, 22 (3), 18-22.
18. Man, C.; Pang, X.; Xie, K.; Lu, Y.; Liu, S.; Yang, S.; Liu, Y.; Jiang, Y., Use of a gel iodometric method for the rapid determination of β–lactamase in milk. 2013; Vol. 33, p 44-48.
19. Sargent, M. G., Rapid fixed-time assay for penicillinase. Journal of Bacteriology 1968, 95 (4), 1493-1494.
20. Sawai, T.; Takahashi, I.; Yamagishi, S., Iodometric Assay Method for Beta-Lactamase with Various Beta-Lactam Antibiotics as Substrates. Antimicrobial Agents and Chemotherapy 1978, 13 (6), 910-913.
21. Rubin, F. A.; Smith, D. H., Characterization of R Factor β-Lactamases by the Acidimetric Method. Antimicrobial Agents and Chemotherapy 1973, 3 (1), 68-73.
22. Labia, R.; Andrillon, J.; Le Goffic, F., Computerized microacidimetric determination of β lactamase Michaelis—Menten constants. FEBS Letters 1973, 33 (1), 42-44.
23. Anago, E.; Ayi-Fanou, L.; Akpovi, C. D.; Hounkpe, W. B.; Agassounon-Djikpo Tchibozo, M.; Bankole, H. S.; Sanni, A., Antibiotic resistance and genotype of beta-lactamase producing Escherichia coli in nosocomial infections in Cotonou, Benin. Annals of Clinical Microbiology and Antimicrobials 2015, 14, 5.
24. Wintermans, B. B.; Vandenbroucke-Grauls, C. M. J. E., Outline of a bacterial filter-based assay to detect beta-lactamases. Journal of Microbiological Methods 2016, 120 (Supplement C), 29-33.
25. O'Callaghan, C. H.; Morris, A.; Kirby, S. M.; Shingler, A. H., Novel Method for Detection of β-Lactamases by Using a Chromogenic Cephalosporin Substrate. Antimicrobial Agents and Chemotherapy 1972, 1 (4), 283-288.
26. Jones, R. N.; Wilson, H. W.; Novick, W. J., In vitro evaluation of pyridine-2-azo-p-dimethylaniline cephalosporin, a new diagnostic chromogenic reagent, and comparison with nitrocefin, cephacetrile, and other beta-lactam compounds. Journal of Clinical Microbiology 1982, 15 (4), 677-683.
27. Chantemesse, B.; Betelli, L.; Solanas, S.; Vienney, F.; Bollache, L.; Hartmann, A.; Rochelet, M., A nitrocefin-based amperometric assay for the rapid quantification of extended-spectrum β-lactamase-producing Escherichia coli in wastewaters. Water Res 2017, 109, 375-381.
28. Gao, W. Z.; Xing, B. G.; Tsien, R. Y.; Rao, J. H., Novel fluorogenic substrates for imaging 6-lactamase gene expression. Journal of the American Chemical Society 2003, 125 (37), 11146-11147.
29. Xing, B.; Khanamiryan, A.; Rao, J. H., Cell-permeable near-infrared fluorogenic substrates for imaging beta-lactamase activity. Journal of the American Chemical Society 2005, 127 (12), 4158-4159.
30. Naqvi, T.; Singh, R., A novel chemiluminescent substrate for detecting lactamase. Molecular Biosystems 2007, 3 (6), 431-438.
31. Chen, Y. P.; Xianyu, Y. L.; Wu, J.; Zheng, W. F.; Rao, J. H.; Jiang, X. Y., Point-of-Care Detection of beta-Lactamase in Milk with a Universal Fluorogenic Probe. Analytical Chemistry 2016, 88 (11), 5605-5609.
32. Mao, W. Y.; Xia, L. Y.; Wang, Y. Q.; Xie, H. X., A Self-Immobilizing and Fluorogenic Probe for -Lactamase Detection. Chemistry-an Asian Journal 2016, 11 (24), 3493-3497.
33. Thai, H. B.; Yu, J. K.; Park, B. S.; Park, Y. J.; Min, S. J.; Ahn, D. R., A fluorogenic substrate of beta-lactamases and its potential as a probe to detect the bacteria resistant to the third-generation oxyimino-cephalosporins. Biosensors & bioelectronics 2016, 77, 1026-31.
34. June, C. M.; Vaughan, R. M.; Ulberg, L. S.; Bonomo, R. A.; Witucki, L. A.; Leonard, D. A., A fluorescent carbapenem for structure function studies of penicillin-binding proteins, beta-lactamases, and beta-lactam sensors. Analytical Biochemistry 2014, 463, 70-74.
35. Zou, L.; Cheong, W.-L.; Chung, W.-H.; Leung, Y.-C.; Wong, K.-Y.; Wong, M.-K.; Chan, P.-H., A Switch-On Fluorescence Assay for Bacterial β-Lactamases with Amyloid Fibrils as Fluorescence Enhancer and Visual Tool. Chemistry – A European Journal 2010, 16 (45), 13367-13371.
36. Khan, S.; Sallum, U. W.; Zheng, X.; Nau, G. J.; Hasan, T., Rapid optical determination of β-lactamase and antibiotic activity. BMC Microbiology 2014, 14 (1), 84.
37. Aw, J.; Widjaja, F.; Ding, Y. C.; Mu, J.; Yang, L.; Xing, B. G., Enzyme-responsive reporter molecules for selective localization and fluorescence imaging of pathogenic biofilms (vol 53, pg 3330, 2017). Chemical Communications 2017, 53 (75), 10467-10467.
38. Zheng, X.; Sallum, U. W.; Verma, S.; Athar, H.; Evans, C. L.; Hasan, T., Exploiting a Bacterial Drug-Resistance Mechanism: A Light-Activated Construct for the Destruction of MRSA. Angewandte Chemie International Edition 2009, 48 (12), 2148-2151.
39. Shao, Q.; Zheng, Y.; Dong, X.; Tang, K.; Yan, X.; Xing, B., A covalent reporter of beta-lactamase activity for fluorescent imaging and rapid screening of antibiotic-resistant bacteria. Chemistry (Weinheim an der Bergstrasse, Germany) 2013, 19 (33), 10903-10.
40. Prado, T. M. d.; Foguel, M. V.; Gonçalves, L. M.; Sotomayor, M. d. P. T., β-Lactamase-based biosensor for the electrochemical determination of benzylpenicillin in milk. Sensors and Actuators B: Chemical 2015, 210 (Supplement C), 254-258.
41. Zhou, S.; Zhao, Y.; Mecklenburg, M.; Yang, D.; Xie, B., A novel thermometric biosensor for fast surveillance of β-lactamase activity in milk. Biosensors and Bioelectronics 2013, 49 (Supplement C), 99-104.
42. Liu, Z.; Zhang, J.; Rao, S.; Sun, L.; Zhang, J.; Liu, R.; Zheng, G.; Ma, X.; Hou, S.; Zhuang, X.; Song, X.; Li, Q., Heptaplex PCR melting curve analysis for rapid detection of plasmid-mediated AmpC β-lactamase genes. Journal of Microbiological Methods 2015, 110 (Supplement C), 1-6.
43. Liu, Q.; Luo, T.; Li, J.; Mei, J.; Gao, Q., Triplex real-time PCR melting curve analysis for detecting Mycobacterium tuberculosis mutations associated with resistance to second-line drugs in a single reaction. Journal of Antimicrobial Chemotherapy 2013, 68 (5), 1097-1103.
44. Huang, Q.; Liu, Z.; Liao, Y.; Chen, X.; Zhang, Y.; Li, Q., Multiplex Fluorescence Melting Curve Analysis for Mutation Detection with Dual-Labeled, Self-Quenched Probes. PLoS ONE 2011, 6 (4), e19206.
45. Zhou, S.; Wang, D.; Zhao, Y.; Wu, Y., A rapid HPLC method for indirect quantification of β-lactamase activity in milk. Journal of Dairy Science 2015, 98 (4), 2197-2204.
46. Xu, Z.; Wang, H.-Y.; Huang, S.-X.; Wei, Y.-L.; Yao, S.-J.; Guo, Y.-L., Determination of β-Lactamase Residues in Milk Using Matrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometry. Analytical Chemistry 2010, 82 (5), 2113-2118.
47. Ikryannikova, L. N.; Shitikov, E. A.; Zhivankova, D. G.; Il'ina, E. N.; Edelstein, M. V.; Govorun, V. M., A MALDI TOF MS-based minisequencing method for rapid detection of TEM-type extended-spectrum beta-lactamases in clinical strains of Enterobacteriaceae. Journal of Microbiological Methods 2008, 75 (3), 385-391.
48. Jiang, T.; Liu, R.; Huang, X.; Feng, H.; Teo, W.; Xing, B., Colorimetric screening of bacterial enzyme activity and inhibition based on the aggregation of gold nanoparticles. Chemical communications (Cambridge, England) 2009, (15), 1972-4.
49. Lee, S.; Kang, S.; Eom, M. S.; Han, M. S., Colorimetric assay for β-lactamase activity using cocktail of penicillin and 4-(2-pyridylazo)resorcinol (PAR)–2Hg2+ complex. Dyes and Pigments 2017, 137 (Supplement C), 518-522.
50. Qin, J.; Cui, X.; Wu, P.; Jiang, Z.; Chen, Y.; Yang, R.; Hu, Q.; Sun, Y.; Zhao, S., Fluorescent sensor assay for β-lactamase in milk based on a combination of aptamer and graphene oxide. Food Control 2017, 73 (Part B), 726-733.
51. Balouiri, M.; Sadiki, M.; Ibnsouda, S. K., Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 2016, 6 (2), 71-79.
52. Remy, I.; Ghaddar, G.; Michnick, S. W., Using the [beta]-lactamase protein-fragment complementation assay to probe dynamic protein-protein interactions. Nat. Protocols 2007, 2 (9), 2302-2306.
53. Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications 2001, (18), 1740-1741.
54. Merola, G.; Martini, E.; Tomassetti, M.; Campanella, L., Simple and suitable immunosensor for β-lactam antibiotics analysis in real matrixes: Milk, serum, urine. Journal of Pharmaceutical and Biomedical Analysis 2015, 106 (Supplement C), 186-196.
55. Beltrán, M. C.; Berruga, M. I.; Molina, A.; Althaus, R. L.; Molina, M. P., Performance of current microbial tests for screening antibiotics in sheep and goat milk. International Dairy Journal 2015, 41 (Supplement C), 13-15.
56. Yong, K.-T.; Swihart, M. T.; Ding, H.; Prasad, P. N., Preparation of Gold Nanoparticles and their Applications in Anisotropic Nanoparticle Synthesis and Bioimaging. Plasmonics 2009, 4 (2), 79-93.
57. Bai, Y.; Feng, F.; Zhao, L.; Chen, Z.; Wang, H.; Duan, Y., A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. Analyst 2014, 139 (8), 1843-1846.
58. Sefah, K.; Shangguan, D.; Xiong, X.; O'Donoghue, M. B.; Tan, W., Development of DNA aptamers using Cell-SELEX. Nature protocols 2010, 5 (6), 1169-85.
59. Lu, Z.; Chen, X.; Wang, Y.; Zheng, X.; Li, C. M., Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchimica Acta 2015, 182 (3), 571-578.
60. Xing, X.-J.; Liu, X.-G.; Yue, H.; Luo, Q.-Y.; Tang, H.-W.; Pang, D.-W., Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Biosensors and Bioelectronics 2012, 37 (1), 61-67.
61. Zhu, Y.; Cai, Y.; Xu, L.; Zheng, L.; Wang, L.; Qi, B.; Xu, C., Building An Aptamer/Graphene Oxide FRET Biosensor for One-Step Detection of Bisphenol A. ACS Applied Materials & Interfaces 2015, 7 (14), 7492-7496.
62. Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N., A Graphene Platform for Sensing Biomolecules. Angewandte Chemie International Edition 2009, 48 (26), 4785-4787.
63. Lou, X.; Ou, D.; Li, Q.; Li, Z., An indirect approach for anion detection: the displacement strategy and its application. Chemical Communications 2012, 48 (68), 8462-8477.
64. Lou, X.; Zhang, L.; Qin, J.; Li, Z., An alternative approach to develop a highly sensitive and selective chemosensor for the colorimetric sensing of cyanide in water. Chemical Communications 2008, (44), 5848-5850.
65. Li, Z. a.; Lou, X.; Yu, H.; Li, Z.; Qin, J., An Imidazole-Functionalized Polyfluorene Derivative as Sensitive Fluorescent Probe for Metal Ions and Cyanide. Macromolecules 2008, 41 (20), 7433-7439.
66. Choi, M. G.; Cha, S.; Lee, H.; Jeon, H. L.; Chang, S.-K., Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein. Chemical Communications 2009, (47), 7390-7392.
67. Chung, S.-Y.; Nam, S.-W.; Lim, J.; Park, S.; Yoon, J., A highly selective cyanide sensing in watervia fluorescence change and its application to in vivo imaging. Chemical Communications 2009, (20), 2866-2868.
68. Männel-Croisé, C.; Meister, C.; Zelder, F., “Naked-Eye” Screening of Metal-Based Chemosensors for Biologically Important Anions. Inorganic Chemistry 2010, 49 (22), 10220-10222.
69. Jung, H. S.; Han, J. H.; Kim, Z. H.; Kang, C.; Kim, J. S., Coumarin-Cu(II) Ensemble-Based Cyanide Sensing Chemodosimeter. Organic Letters 2011, 13 (19), 5056-5059.
70. Wang, K.; Ma, L.; Liu, G.; Cao, D.; Guan, R.; Liu, Z., Two fluorescence turn-on coumarin Schiff's base chemosensors for cyanide anions. Dyes and Pigments 2016, 126 (Supplement C), 104-109.
71. Eom, M. S.; Noh, J.; Kim, H.-S.; Yoo, S.; Han, M. S.; Lee, S., High-Throughput Screening Protocol for the Coupling Reactions of Aryl Halides Using a Colorimetric Chemosensor for Halide Ions. Organic Letters 2016, 18 (8), 1720-1723.
72. Lee, J. E.; Lee, N.; Kim, H.; Kim, J.; Choi, S. H.; Kim, J. H.; Kim, T.; Song, I. C.; Park, S. P.; Moon, W. K.; Hyeon, T., Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery. Journal of the American Chemical Society 2010, 132 (2), 552-557.
73. Hu, H.; Arena, F.; Gianolio, E.; Boffa, C.; Di Gregorio, E.; Stefania, R.; Orio, L.; Baroni, S.; Aime, S., Mesoporous silica nanoparticles functionalized with fluorescent and MRI reporters for the visualization of murine tumors overexpressing [small alpha]v[small beta]3 receptors. Nanoscale 2016, 8 (13), 7094-7104.
74. Li, X.; Zhao, W.; Liu, X.; Chen, K.; Zhu, S.; Shi, P.; Chen, Y.; Shi, J., Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers. Acta Biomaterialia 2016, 30 (Supplement C), 378-387.
75. Nakamura, T.; Sugihara, F.; Matsushita, H.; Yoshioka, Y.; Mizukami, S.; Kikuchi, K., Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chemical Science 2015, 6 (3), 1986-1990.
76. Wang, L.; Li, L.-L.; Ma, H. L.; Wang, H., Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery. Chinese Chemical Letters 2013, 24 (5), 351-358.
77. Lee, J. E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T., Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. Accounts of Chemical Research 2011, 44 (10), 893-902.
78. Wang, L.; Li, L.-l.; Fan, Y.-s.; Wang, H., Host–Guest Supramolecular Nanosystems for Cancer Diagnostics and Therapeutics. Advanced Materials 2013, 25 (28), 3888-3898.
79. Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H.-T.; Lin, V. S. Y., Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research 2007, 40 (9), 846-853.
80. Jaque, D.; Martinez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martin Rodriguez, E.; Garcia Sole, J., Nanoparticles for photothermal therapies. Nanoscale 2014, 6 (16), 9494-9530.
81. Wu, M.; Wang, Q.; Liu, X.; Liu, J., Highly efficient loading of doxorubicin in Prussian Blue nanocages for combined photothermal/chemotherapy against hepatocellular carcinoma. RSC Advances 2015, 5 (39), 30970-30980.
82. Shen, S.; Wang, S.; Zheng, R.; Zhu, X.; Jiang, X.; Fu, D.; Yang, W., Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 2015, 39 (Supplement C), 67-74.
83. Chen, C.; Wang, S.; Li, L.; Wang, P.; Chen, C.; Sun, Z.; Song, T., Bacterial magnetic nanoparticles for photothermal therapy of cancer under the guidance of MRI. Biomaterials 2016, 104 (Supplement C), 352-360.
84. Peng, H.; Tang, J.; Zheng, R.; Guo, G.; Dong, A.; Wang, Y.; Yang, W., Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy. Advanced Healthcare Materials 2017, 6 (7), 1601289-n/a.
85. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 1968, 26 (1), 62-69.
86. Tang, F.; Li, L.; Chen, D., Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials 2012, 24 (12), 1504-1534.
87. Bharti, C.; Nagaich, U.; Pal, A. K.; Gulati, N., Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation 2015, 5 (3), 124-133.
88. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of Mesoporous Silica Nanoparticles. 2013; Vol. 42.
89. Xu, Z. G.; Ma, X. Q.; Gao, Y. E.; Hou, M. L.; Xue, P.; Li, C. M.; Kang, Y. J., Multifunctional silica nanoparticles as a promising theranostic platform for biomedical applications. Materials Chemistry Frontiers 2017, 1 (7), 1257-1272.
90. Iler, R. K., The Chemistry of Silica—Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. John Wiley & Sons 1978.
91. Lin, Y.-S.; Abadeer, N.; Haynes, C. L., Stability of small mesoporous silica nanoparticles in biological media. Chemical Communications 2011, 47 (1), 532-534.
92. Yue, Q.; Zhang, Y.; Jiang, Y.; Li, J.; Zhang, H.; Yu, C.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y.; Zhao, D., Nanoengineering of Core–Shell Magnetic Mesoporous Microspheres with Tunable Surface Roughness. Journal of the American Chemical Society 2017, 139 (13), 4954-4961.
93. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
94. Science, P. S. S.-E. C. o., Antibiotic Mechanisms. 2017.
95. Page, M. I.; Tsang, W. Y.; Ahmed, N., Comparison of the mechanisms of reactions of β-lactams and β-sultams, including their reactions with some serine enzymes. Journal of Physical Organic Chemistry 2006, 19 (8-9), 446-451.
96. 衛生福利部疾病管制署, 國內多重抗藥性細菌之基因型變異現況及臨床相關資料之蒐集與流行病學研究. 2016.
97. Moscow J, M. C., Cowan KH., General Mechanisms of Drug Resistance. . Holland-Frei Cancer Medicine. 6th edition. 2013.
98. Hu, Y.-F.; Hou, C. J.-Y.; Kuo, C.-F.; Wang, N.-Y.; Wu, A. Y.-J.; Leung, C.-H.; Liu, C.-P.; Yeh, H.-I., Emergence of carbapenem-resistant Acinetobacter baumannii ST787 in clinical isolates from blood in a tertiary teaching hospital in Northern Taiwan. Journal of Microbiology, Immunology and Infection 2017, 50 (5), 640-645.
99. Lin, Y.-T.; Wang, Y.-P.; Wang, F.-D.; Fung, C.-P., Community-onset Klebsiella pneumoniae pneumonia in Taiwan: clinical features of the disease and associated microbiological characteristics of isolates from pneumonia and nasopharynx. Frontiers in Microbiology 2015, 6, 122.
100. Yan, J.-J.; Hsueh, P.-R.; Lu, J.-J.; Chang, F.-Y.; Shyr, J.-M.; Wan, J.-H.; Liu, Y.-C.; Chuang, Y.-C.; Yang, Y.-C.; Tsao, S.-M.; Wu, H.-H.; Wang, L.-S.; Lin, T.-P.; Wu, H.-M.; Chen, H.-M.; Wu, J.-J., Extended-Spectrum β-Lactamases and Plasmid-Mediated AmpC Enzymes among Clinical Isolates of Escherichia coli and Klebsiella pneumoniae from Seven Medical Centers in Taiwan. Antimicrobial Agents and Chemotherapy 2006, 50 (5), 1861-1864.
101. Xu, J.; Sun, L.; Li, J.; Liang, J.; Zhang, H.; Yang, W., FITC and Ru(phen)32+ co-doped silica particles as visualized ratiometric pH indicator. Nanoscale Research Letters 2011, 6 (1), 561.
102. Xu, J. Q.; Liang, J. L.; Li, J.; Yang, W. S., Multicolor Dye-Doped Silica Nanoparticles Independent of FRET. Langmuir 2010, 26 (20), 15722-15725.
103. Yao, S.; Schafer-Hales, K. J.; Belfield, K. D., A new water-soluble near-neutral ratiometric fluorescent pH indicator. Organic Letters 2007, 9 (26), 5645-5648.
104. Sjöback, R.; Nygren, J.; Kubista, M., Absorption and fluorescence properties of fluorescein. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 1995, 51 (6), L7-L21.
105. Kang, K. A.; Wang, J.; Jasinski, J. B.; Achilefu, S., Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement. Journal of Nanobiotechnology 2011, 9, 16-16.
106. Koneman, E. W., Koneman's Color Atlas and Textbook of Diagnostic Microbiology (Color Atlas & Textbook of Diagnostic Microbiology). 5th ed, 1001.
107. Guo, H.; Qian, H.-s.; Sun, S.; Sun, D.; Yin, H.; Cai, X.; Liu, Z.; Wu, J.; Jiang, T.; Liu, X., Hollow mesoporous silica nanoparticles for intracellular delivery of fluorescent dye. 2011; Vol. 5, p 1.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *