帳號:guest(3.128.171.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李昇銘
作者(英文):Sheng-Ming Li
論文名稱:固定化酵素結合超音波輔助萃取消化快速鑑定微生物
指導教授:何彥鵬
指導教授(英文):Yen-Peng Ho
口試委員:江政剛
張凱誌
口試委員(英文):Cheng-Kang Chiang
Kai-Chih Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610412016
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:76
關鍵詞:細菌固定化酵素
關鍵詞(英文):bacteriaimmobilized trypsin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:18
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
超音波結合鐵奈米粒子萃取微生物蛋白,比單純使用超音波萃取有更好的效果,因此我們嘗試以鐵奈米粒子為載體進行固定化酵素修飾結合超音波萃取,是否能達到同時進行萃取與消化的效果。固定化酵素具有可重複性、高穩定性及有效降低酵素自切現象等特性,加入大量固定化酵素提高酵素與蛋白質的比例,讓酵素更容易與蛋白質反應,使耗費的時間減少。本實驗以 Fe3O4@SiO2@PEI 奈米粒子利用靜電吸附的方式,得到9.061.36 pmole 胰蛋白酶/μg NPs,將固定化胰蛋白酶與未進行細胞裂解的細菌混合,利用超音波水浴結合固定化酵素鐵奈米粒子,在 37°C 水浴中超音波震盪達到萃取與消化蛋白質的效果,縮短消化時間,消化產物最後再以 LC-MS/MS 進行分析,可鑑定到 70±3 個蛋白質,與傳統細菌萃取消化方法鑑定到的 403 個蛋白質多。
目錄
壹、緒論 1
1、前言 1
2、利用質譜儀鑑定蛋白質體 2
3、胰蛋白酶 (trypsin) 的固定化 3
3.1、吸附固定法 (absorption) 4
3.2、共價鍵結法 (covalent binding) 4
3.3、包埋法 (entrapment) 5
3.4、交聯法 (cross-linking) 6
4、傳統微生物鑑定方法 7
5、細胞裂解與蛋白質萃取 8
6、質譜儀與細菌鑑定之應用 10
7、快速消化蛋白質方法 11
7.1、水浴加熱法 11
7.2、微波消化 12
7.3、超音波輔助消化 13
8、研究動機 14
貳、研究內容 15
1.、藥品與儀器 15
1.1、 藥品 15
1.2、 儀器 16
1.3、 質譜儀及液相層析儀參數與條件 17
1.4、 資料庫搜尋參數設定 19
2、實驗步驟 20
2.1、氧化鐵磁性奈米粒子合成 20
2.2、磁性奈米粒子表面修飾二氧化矽與聚乙烯亞胺 (PEI) 21
2.3、磁性奈米粒子定量 22
2.4、胰蛋白酶固定化 22
2.5、胰蛋白酶定量 23
2.6、利用牛血蛋白進行傳統水浴消化實驗 25
2.7、利用牛血清蛋白測試固定化酵素消化反應效果 25
2.8、利用 BSA 進行固定化胰蛋白酶穩定性測試 26
2.9、細菌樣品製備 26
2.10、細菌樣品萃取蛋白質 27
2.11、細菌蛋白質定量 27
2.12、細菌蛋白質水解步驟 28
2.13、固定化酵素結合超音波輔助萃取消化細菌蛋白質 29
2.14、固定化酵素萃取消化重複使用次數 30
參、結果與討論 33
1、胰蛋白酶固定化優化條件 33
1.1、Fe3O4@SiO2@PEI 磁性奈米粒子取用重量優化 33
1.2、胰蛋白酶固定時間優化 35
2、以牛血清蛋白測試固定化酵素 38
3、固定化胰蛋白酶保存時間測試 40
4、利用固定化胰蛋白酶結合超音波輔助快速鑑定微生物 43
4.1、不同重量固定化胰蛋白酶使用超音波輔助萃取消化法鑑定結果 43
4.2、固定化胰蛋白酶超音波輔助萃取消化與傳統水浴消化蛋白質結果比較 46
4.3、固定化酵素萃取消化重複使用次數 49
肆、結論 51
伍、參考文獻 53
六、附錄 59

1. Caprioli, R. M.; Farmer, T. B.; Gile, J., Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Analytical chemistry 1997, 69 (23), 4751-60.
2. Yamashita, M.; Fenn, J. B., Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry 1984, 88 (20), 4451-4459.
3. Ruan, C.; Yang, L.; Li, Y., Immunobiosensor Chips for Detection of Escherichia coli O157:H7 Using Electrochemical Impedance Spectroscopy. Analytical chemistry 2002, 74 (18), 4814-4820.
4. Bischoff, C.; Luthy, J.; Altwegg, M.; Baggi, F., Rapid detection of diarrheagenic E. coli by real-time PCR. J Microbiol Methods 2005, 61 (3), 335-41.
5. Pappin, D. J. C.; Hojrup, P.; Bleasby, A. J., Rapid identification of proteins by peptide-mass fingerprinting. Current Biology 1993, 3 (6), 327-332.
6. Hunyadi-Gulyás, É.; Medzihradszky, K. F., Factors that contribute to the complexity of protein digests. Drug Discovery Today: TARGETS 2004, 3 (2, Supplement), 3-10.
7. Yates, J., Mass spectrometry and the age of the proteome. 1998; Vol. 33, p 1-19.
8. Zheng, G. C. S.-Y., Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion. SCIENTIFIC REPORTS 2014.
9. López-Ferrer, D.; Capelo, J. L.; Vázquez, J., Ultra Fast Trypsin Digestion of Proteins by High Intensity Focused Ultrasound. Journal of Proteome Research 2005, 4 (5), 1569-1574.
10. Amunugama, R.; Jones, R.; Ford, M.; Allen, D., Bottom-Up Mass Spectrometry–Based Proteomics as an Investigative Analytical Tool for Discovery and Quantification of Proteins in Biological Samples. Advances in Wound Care 2013, 2 (9), 549-557.
11. Switzar, L.; Giera, M.; Niessen, W. M. A., Protein Digestion: An Overview of the Available Techniques and Recent Developments. Journal of Proteome Research 2013, 12 (3), 1067-1077.
12. Ma, J.; Zhang, L.; Liang, Z.; Zhang, W.; Zhang, Y., Recent advances in immobilized enzymatic reactors and their applications in proteome analysis. Analytica Chimica Acta 2009, 632 (1), 1-8.
13. Byrne, R. E.; Scanu, A. M., Soluble and immobilized trypsin as structural probes of human plasma high-density lipoproteins: enzyme properties and kinetics of proteolysis. Biochemistry 1983, 22 (12), 2894-2903.
14. Goradia, D.; Cooney, J.; Hodnett, B. K.; Magner, E., The adsorption characteristics, activity and stability of trypsin onto mesoporous silicates. Journal of Molecular Catalysis B: Enzymatic 2005, 32 (5), 231-239.
15. Shui, W.; Fan, J.; Yang, P.; Liu, C.; Zhai, J.; Lei, J.; Yan; Zhao, D.; Chen, X., Nanopore-Based Proteolytic Reactor for Sensitive and Comprehensive Proteomic Analyses. Analytical chemistry 2006, 78 (14), 4811-4819.
16. Ma, J.; Liang, Z.; Qiao, X.; Deng, Q.; Tao, D.; Zhang, L.; Zhang, Y., Organic−Inorganic Hybrid Silica Monolith Based Immobilized Trypsin Reactor with High Enzymatic Activity. Analytical chemistry 2008, 80 (8), 2949-2956.
17. Yamaguchi, H.; Miyazaki, M.; Honda, T.; Briones‐Nagata, M. P.; Arima, K.; Maeda, H., Rapid and efficient proteolysis for proteomic analysis by protease‐immobilized microreactor. ELECTROPHORESIS 2009, 30 (18), 3257-3264.
18. Jaturanpinyo, M.; Harada, A.; Yuan, X.; Kataoka, K., Preparation of Bionanoreactor Based on Core−Shell Structured Polyion Complex Micelles Entrapping Trypsin in the Core Cross-Linked with Glutaraldehyde. Bioconjugate Chemistry 2004, 15 (2), 344-348.
19. Wang, M.; Jia, C.; Qi, W.; Yu, Q.; Peng, X.; Su, R.; He, Z., Porous-CLEAs of papain: Application to enzymatic hydrolysis of macromolecules. Bioresource Technology 2011, 102 (3), 3541-3545.
20. 衛生福利部食品藥物管理署 http://www.fda.gov.tw/TC/index.aspx.
21. 美國食品藥物管理局 http://www.fda.gov.tw.
22. Ginsberg, C.; Brown, S.; Walker, S., Bacterial Cell Wall Components. In Glycoscience: Chemistry and Chemical Biology, Fraser-Reid, B. O.; Tatsuta, K.; Thiem, J., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; pp 1535-1600.
23. Yeung, Y.-G.; Nieves, E.; Angeletti, R.; Stanley, E. R., Removal of detergents from protein digests for mass spectrometry analysis. Analytical biochemistry 2008, 382 (2), 135-137.
24. Ye, X.; Johann, D. J.; Hakami, R. M.; Xiao, Z.; Meng, Z.; Ulrich, R. G.; Issaq, H. J.; Veenstra, T. D.; Blonder, J., Optimization of protein solubilization for the analysis of the CD14 human monocyte membrane proteome using LC-MS/MS. Journal of Proteomics 2009, 73 (1), 112-122.
25. Bodzon-Kulakowska, A.; Bierczynska-Krzysik, A.; Dylag, T.; Drabik, A.; Suder, P.; Noga, M.; Jarzebinska, J.; Silberring, J., Methods for samples preparation in proteomic research. Journal of Chromatography B 2007, 849 (1), 1-31.
26. Vandeventer, P. E.; Weigel, K. M.; Salazar, J.; Erwin, B.; Irvine, B.; Doebler, R.; Nadim, A.; Cangelosi, G. A.; Niemz, A., Mechanical Disruption of Lysis-Resistant Bacterial Cells by Use of a Miniature, Low-Power, Disposable Device. Journal of Clinical Microbiology 2011, 49 (7), 2533-2539.
27. Nägele, E.; Vollmer, M.; Hörth, P., Two-dimensional nano-liquid chromatography–mass spectrometry system for applications in proteomics. Journal of Chromatography A 2003, 1009 (1), 197-205.
28. Ramanan, R. N.; Ling, T. C.; Ariff, A. B., The performance of a glass bead shaking technique for the disruption of Escherichia coli cells. Biotechnology and Bioprocess Engineering 2008, 13 (5), 613-623.
29. Nally, J. E.; Whitelegge, J. P.; Aguilera, R.; Pereira, M. M.; Blanco, D. R.; Lovett, M. A., Purification and proteomic analysis of outer membrane vesicles from a clinical isolate of Leptospira interrogans serovar Copenhageni. PROTEOMICS 2005, 5 (1), 144-152.
30. Wong, H. C.; Chang, C. N.; Chen, M. Y., Effects of Heat, Acid, and Freeze-Thaw Challenges on Survival of Starved Vibrio parahaemolyticus in Minimal Salt Medium, Tryptic Soy Broth, and Filtered Oyster Homogenate Medium. Journal of Food Protection 2004, 67 (6), 1243-1246.
31. C. Cain, T.; Lubman, D.; J. Weber, W.; Vertes, A., Differentiation of Bacteria Using Protein Profiles from Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry. 1994; Vol. 8.
32. Eng, J. K.; McCormack, A. L.; Yates, J. R., An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 1994, 5 (11), 976-989.
33. Dworzanski, J. P.; Snyder, A. P.; Chen, R.; Zhang, H.; Wishart, D.; Li, L., Identification of Bacteria Using Tandem Mass Spectrometry Combined with a Proteome Database and Statistical Scoring. Analytical chemistry 2004, 76 (8), 2355-2366.
34. Lo, A. A. L.; Hu, A.; Ho, Y. P., Identification of microbial mixtures by LC‐selective proteotypic‐peptide analysis(SPA). Journal of Mass Spectrometry 2006, 41 (8), 1049-1060.
35. Kassim, A.; Pflüger, V.; Premji, Z.; Daubenberger, C.; Revathi, G., Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiology 2017, 17 (1), 128.
36. Ziegler, D.; Pothier, J. F.; Ardley, J.; Fossou, R. K.; Pflüger, V.; de Meyer, S.; Vogel, G.; Tonolla, M.; Howieson, J.; Reeve, W.; Perret, X., Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Applied Microbiology and Biotechnology 2015, 99 (13), 5547-5562.
37. Bark, S. J.; Muster, N.; Yates, J. R.; Siuzdak, G., High-Temperature Protein Mass Mapping Using a Thermophilic Protease. Journal of the American Chemical Society 2001, 123 (8), 1774-1775.
38. Havliš, J.; Thomas, H.; Šebela, M.; Shevchenko, A., Fast-Response Proteomics by Accelerated In-Gel Digestion of Proteins. Analytical chemistry 2003, 75 (6), 1300-1306.
39. Jeng, J.; Lin, M. F.; Cheng, F. Y.; Yeh, C. S.; Shiea, J., Using high‐concentration trypsin‐immobilized magnetic nanoparticles for rapid in situ protein digestion at elevated temperature. Rapid Communications in Mass Spectrometry 2007, 21 (18), 3060-3068.
40. Pramanik, B. N.; Mirza, U. A.; Ing, Y. H.; Liu, Y. H.; Bartner, P. L.; Weber, P. C.; Bose, A. K., Microwave‐enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Science 2002, 11 (11), 2676-2687.
41. Lin, S.; Yao, G.; Qi, D.; Li, Y.; Deng, C.; Yang, P.; Zhang, X., Fast and Efficient Proteolysis by Microwave-Assisted Protein Digestion Using Trypsin-Immobilized Magnetic Silica Microspheres. Analytical chemistry 2008, 80 (10), 3655-3665.
42. Kim, H.; Kim, H. S.; Lee, D.; Shin, D.; Shin, D.; Kim, J.; Kim, J., Microwave-Assisted Protein Digestion in a Plate Well for Facile Sampling and Rapid Digestion. Analytical chemistry 2017, 89 (20), 10655-10660.
43. Chen, Z.; Li, Y.; Lin, S.; Wei, M.; Du, F.; Ruan, G., Development of continuous microwave-assisted protein digestion with immobilized enzyme. Biochemical and Biophysical Research Communications 2014, 445 (2), 491-496.
44. López-Ferrer, D.; Hixson, K. K.; Smallwood, H.; Squier, T. C.; Petritis, K.; Smith, R. D., Evaluation of a High-Intensity Focused Ultrasound-Immobilized Trypsin Digestion and 18O-Labeling Method for Quantitative Proteomics. Analytical chemistry 2009, 81 (15), 6272-6277.
45. Vale, G.; Santos, H. M.; Carreira, R. J.; Fonseca, L.; Miró, M.; Cerdà, V.; Reboiro‐Jato, M.; Capelo, J. L., An assessment of the ultrasonic probe‐based enhancement of protein cleavage with immobilized trypsin. PROTEOMICS 2011, 11 (19), 3866-3876.
46. Shin, S.; Yang, H.-J.; Kim, J.; Kim, J., Effects of temperature on ultrasound-assisted tryptic protein digestion. Analytical Biochemistry 2011, 414 (1), 125-130.
47. Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S., Probability‐based protein identification by searching sequence databases using mass spectrometry data. ELECTROPHORESIS 1999, 20 (18), 3551-3567.
48. Boeckmann, B.; Bairoch, A.; Apweiler, R.; Blatter, M.-C.; Estreicher, A.; Gasteiger, E.; Martin, M. J.; Michoud, K.; O'Donovan, C.; Phan, I.; Pilbout, S.; Schneider, M., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 2003, 31 (1), 365-370.
49. Chen, W.-J.; Tsai, P.-J.; Chen, Y.-C., Functional Nanoparticle-Based Proteomic Strategies for Characterization of Pathogenic Bacteria. Analytical chemistry 2008, 80 (24), 9612-9621.
50. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976, 72 (1), 248-254.
51. Reddy, P.; Chang, K.-C.; Liu, Z.-J.; Chen, C.-T.; Ho, Y.-P., Functionalized Magnetic Iron Oxide (Fe3O4) Nanoparticles for Capturing Gram-Positive and Gram-Negative Bacteria. 2014; Vol. 10.
52. Weiner, P. K.; Langridge, R.; Blaney, J. M.; Schaefer, R.; Kollman, P. A., Electrostatic potential molecular surfaces. Proceedings of the National Academy of Sciences of the United States of America 1982, 79 (12), 3754-3758.
53. Nguyen, V. H.; Lee, B.-J., Protein corona: a new approach for nanomedicine design. International Journal of Nanomedicine 2017, 12, 3137-3151.
54. 林呈穎, 固定化胰蛋白酶於蛋白質水解效率之研究. 國立東華大學 2011.
55. 廖偉傑, 磁性奈米粒子輔助萃取配合液相層析串聯質譜法分析細菌蛋白質. 國立東華大學 2014.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *