|
1. Caprioli, R. M.; Farmer, T. B.; Gile, J., Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Analytical chemistry 1997, 69 (23), 4751-60. 2. Yamashita, M.; Fenn, J. B., Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry 1984, 88 (20), 4451-4459. 3. Ruan, C.; Yang, L.; Li, Y., Immunobiosensor Chips for Detection of Escherichia coli O157:H7 Using Electrochemical Impedance Spectroscopy. Analytical chemistry 2002, 74 (18), 4814-4820. 4. Bischoff, C.; Luthy, J.; Altwegg, M.; Baggi, F., Rapid detection of diarrheagenic E. coli by real-time PCR. J Microbiol Methods 2005, 61 (3), 335-41. 5. Pappin, D. J. C.; Hojrup, P.; Bleasby, A. J., Rapid identification of proteins by peptide-mass fingerprinting. Current Biology 1993, 3 (6), 327-332. 6. Hunyadi-Gulyás, É.; Medzihradszky, K. F., Factors that contribute to the complexity of protein digests. Drug Discovery Today: TARGETS 2004, 3 (2, Supplement), 3-10. 7. Yates, J., Mass spectrometry and the age of the proteome. 1998; Vol. 33, p 1-19. 8. Zheng, G. C. S.-Y., Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion. SCIENTIFIC REPORTS 2014. 9. López-Ferrer, D.; Capelo, J. L.; Vázquez, J., Ultra Fast Trypsin Digestion of Proteins by High Intensity Focused Ultrasound. Journal of Proteome Research 2005, 4 (5), 1569-1574. 10. Amunugama, R.; Jones, R.; Ford, M.; Allen, D., Bottom-Up Mass Spectrometry–Based Proteomics as an Investigative Analytical Tool for Discovery and Quantification of Proteins in Biological Samples. Advances in Wound Care 2013, 2 (9), 549-557. 11. Switzar, L.; Giera, M.; Niessen, W. M. A., Protein Digestion: An Overview of the Available Techniques and Recent Developments. Journal of Proteome Research 2013, 12 (3), 1067-1077. 12. Ma, J.; Zhang, L.; Liang, Z.; Zhang, W.; Zhang, Y., Recent advances in immobilized enzymatic reactors and their applications in proteome analysis. Analytica Chimica Acta 2009, 632 (1), 1-8. 13. Byrne, R. E.; Scanu, A. M., Soluble and immobilized trypsin as structural probes of human plasma high-density lipoproteins: enzyme properties and kinetics of proteolysis. Biochemistry 1983, 22 (12), 2894-2903. 14. Goradia, D.; Cooney, J.; Hodnett, B. K.; Magner, E., The adsorption characteristics, activity and stability of trypsin onto mesoporous silicates. Journal of Molecular Catalysis B: Enzymatic 2005, 32 (5), 231-239. 15. Shui, W.; Fan, J.; Yang, P.; Liu, C.; Zhai, J.; Lei, J.; Yan; Zhao, D.; Chen, X., Nanopore-Based Proteolytic Reactor for Sensitive and Comprehensive Proteomic Analyses. Analytical chemistry 2006, 78 (14), 4811-4819. 16. Ma, J.; Liang, Z.; Qiao, X.; Deng, Q.; Tao, D.; Zhang, L.; Zhang, Y., Organic−Inorganic Hybrid Silica Monolith Based Immobilized Trypsin Reactor with High Enzymatic Activity. Analytical chemistry 2008, 80 (8), 2949-2956. 17. Yamaguchi, H.; Miyazaki, M.; Honda, T.; Briones‐Nagata, M. P.; Arima, K.; Maeda, H., Rapid and efficient proteolysis for proteomic analysis by protease‐immobilized microreactor. ELECTROPHORESIS 2009, 30 (18), 3257-3264. 18. Jaturanpinyo, M.; Harada, A.; Yuan, X.; Kataoka, K., Preparation of Bionanoreactor Based on Core−Shell Structured Polyion Complex Micelles Entrapping Trypsin in the Core Cross-Linked with Glutaraldehyde. Bioconjugate Chemistry 2004, 15 (2), 344-348. 19. Wang, M.; Jia, C.; Qi, W.; Yu, Q.; Peng, X.; Su, R.; He, Z., Porous-CLEAs of papain: Application to enzymatic hydrolysis of macromolecules. Bioresource Technology 2011, 102 (3), 3541-3545. 20. 衛生福利部食品藥物管理署 http://www.fda.gov.tw/TC/index.aspx. 21. 美國食品藥物管理局 http://www.fda.gov.tw. 22. Ginsberg, C.; Brown, S.; Walker, S., Bacterial Cell Wall Components. In Glycoscience: Chemistry and Chemical Biology, Fraser-Reid, B. O.; Tatsuta, K.; Thiem, J., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; pp 1535-1600. 23. Yeung, Y.-G.; Nieves, E.; Angeletti, R.; Stanley, E. R., Removal of detergents from protein digests for mass spectrometry analysis. Analytical biochemistry 2008, 382 (2), 135-137. 24. Ye, X.; Johann, D. J.; Hakami, R. M.; Xiao, Z.; Meng, Z.; Ulrich, R. G.; Issaq, H. J.; Veenstra, T. D.; Blonder, J., Optimization of protein solubilization for the analysis of the CD14 human monocyte membrane proteome using LC-MS/MS. Journal of Proteomics 2009, 73 (1), 112-122. 25. Bodzon-Kulakowska, A.; Bierczynska-Krzysik, A.; Dylag, T.; Drabik, A.; Suder, P.; Noga, M.; Jarzebinska, J.; Silberring, J., Methods for samples preparation in proteomic research. Journal of Chromatography B 2007, 849 (1), 1-31. 26. Vandeventer, P. E.; Weigel, K. M.; Salazar, J.; Erwin, B.; Irvine, B.; Doebler, R.; Nadim, A.; Cangelosi, G. A.; Niemz, A., Mechanical Disruption of Lysis-Resistant Bacterial Cells by Use of a Miniature, Low-Power, Disposable Device. Journal of Clinical Microbiology 2011, 49 (7), 2533-2539. 27. Nägele, E.; Vollmer, M.; Hörth, P., Two-dimensional nano-liquid chromatography–mass spectrometry system for applications in proteomics. Journal of Chromatography A 2003, 1009 (1), 197-205. 28. Ramanan, R. N.; Ling, T. C.; Ariff, A. B., The performance of a glass bead shaking technique for the disruption of Escherichia coli cells. Biotechnology and Bioprocess Engineering 2008, 13 (5), 613-623. 29. Nally, J. E.; Whitelegge, J. P.; Aguilera, R.; Pereira, M. M.; Blanco, D. R.; Lovett, M. A., Purification and proteomic analysis of outer membrane vesicles from a clinical isolate of Leptospira interrogans serovar Copenhageni. PROTEOMICS 2005, 5 (1), 144-152. 30. Wong, H. C.; Chang, C. N.; Chen, M. Y., Effects of Heat, Acid, and Freeze-Thaw Challenges on Survival of Starved Vibrio parahaemolyticus in Minimal Salt Medium, Tryptic Soy Broth, and Filtered Oyster Homogenate Medium. Journal of Food Protection 2004, 67 (6), 1243-1246. 31. C. Cain, T.; Lubman, D.; J. Weber, W.; Vertes, A., Differentiation of Bacteria Using Protein Profiles from Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry. 1994; Vol. 8. 32. Eng, J. K.; McCormack, A. L.; Yates, J. R., An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 1994, 5 (11), 976-989. 33. Dworzanski, J. P.; Snyder, A. P.; Chen, R.; Zhang, H.; Wishart, D.; Li, L., Identification of Bacteria Using Tandem Mass Spectrometry Combined with a Proteome Database and Statistical Scoring. Analytical chemistry 2004, 76 (8), 2355-2366. 34. Lo, A. A. L.; Hu, A.; Ho, Y. P., Identification of microbial mixtures by LC‐selective proteotypic‐peptide analysis(SPA). Journal of Mass Spectrometry 2006, 41 (8), 1049-1060. 35. Kassim, A.; Pflüger, V.; Premji, Z.; Daubenberger, C.; Revathi, G., Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiology 2017, 17 (1), 128. 36. Ziegler, D.; Pothier, J. F.; Ardley, J.; Fossou, R. K.; Pflüger, V.; de Meyer, S.; Vogel, G.; Tonolla, M.; Howieson, J.; Reeve, W.; Perret, X., Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Applied Microbiology and Biotechnology 2015, 99 (13), 5547-5562. 37. Bark, S. J.; Muster, N.; Yates, J. R.; Siuzdak, G., High-Temperature Protein Mass Mapping Using a Thermophilic Protease. Journal of the American Chemical Society 2001, 123 (8), 1774-1775. 38. Havliš, J.; Thomas, H.; Šebela, M.; Shevchenko, A., Fast-Response Proteomics by Accelerated In-Gel Digestion of Proteins. Analytical chemistry 2003, 75 (6), 1300-1306. 39. Jeng, J.; Lin, M. F.; Cheng, F. Y.; Yeh, C. S.; Shiea, J., Using high‐concentration trypsin‐immobilized magnetic nanoparticles for rapid in situ protein digestion at elevated temperature. Rapid Communications in Mass Spectrometry 2007, 21 (18), 3060-3068. 40. Pramanik, B. N.; Mirza, U. A.; Ing, Y. H.; Liu, Y. H.; Bartner, P. L.; Weber, P. C.; Bose, A. K., Microwave‐enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Science 2002, 11 (11), 2676-2687. 41. Lin, S.; Yao, G.; Qi, D.; Li, Y.; Deng, C.; Yang, P.; Zhang, X., Fast and Efficient Proteolysis by Microwave-Assisted Protein Digestion Using Trypsin-Immobilized Magnetic Silica Microspheres. Analytical chemistry 2008, 80 (10), 3655-3665. 42. Kim, H.; Kim, H. S.; Lee, D.; Shin, D.; Shin, D.; Kim, J.; Kim, J., Microwave-Assisted Protein Digestion in a Plate Well for Facile Sampling and Rapid Digestion. Analytical chemistry 2017, 89 (20), 10655-10660. 43. Chen, Z.; Li, Y.; Lin, S.; Wei, M.; Du, F.; Ruan, G., Development of continuous microwave-assisted protein digestion with immobilized enzyme. Biochemical and Biophysical Research Communications 2014, 445 (2), 491-496. 44. López-Ferrer, D.; Hixson, K. K.; Smallwood, H.; Squier, T. C.; Petritis, K.; Smith, R. D., Evaluation of a High-Intensity Focused Ultrasound-Immobilized Trypsin Digestion and 18O-Labeling Method for Quantitative Proteomics. Analytical chemistry 2009, 81 (15), 6272-6277. 45. Vale, G.; Santos, H. M.; Carreira, R. J.; Fonseca, L.; Miró, M.; Cerdà, V.; Reboiro‐Jato, M.; Capelo, J. L., An assessment of the ultrasonic probe‐based enhancement of protein cleavage with immobilized trypsin. PROTEOMICS 2011, 11 (19), 3866-3876. 46. Shin, S.; Yang, H.-J.; Kim, J.; Kim, J., Effects of temperature on ultrasound-assisted tryptic protein digestion. Analytical Biochemistry 2011, 414 (1), 125-130. 47. Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S., Probability‐based protein identification by searching sequence databases using mass spectrometry data. ELECTROPHORESIS 1999, 20 (18), 3551-3567. 48. Boeckmann, B.; Bairoch, A.; Apweiler, R.; Blatter, M.-C.; Estreicher, A.; Gasteiger, E.; Martin, M. J.; Michoud, K.; O'Donovan, C.; Phan, I.; Pilbout, S.; Schneider, M., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 2003, 31 (1), 365-370. 49. Chen, W.-J.; Tsai, P.-J.; Chen, Y.-C., Functional Nanoparticle-Based Proteomic Strategies for Characterization of Pathogenic Bacteria. Analytical chemistry 2008, 80 (24), 9612-9621. 50. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976, 72 (1), 248-254. 51. Reddy, P.; Chang, K.-C.; Liu, Z.-J.; Chen, C.-T.; Ho, Y.-P., Functionalized Magnetic Iron Oxide (Fe3O4) Nanoparticles for Capturing Gram-Positive and Gram-Negative Bacteria. 2014; Vol. 10. 52. Weiner, P. K.; Langridge, R.; Blaney, J. M.; Schaefer, R.; Kollman, P. A., Electrostatic potential molecular surfaces. Proceedings of the National Academy of Sciences of the United States of America 1982, 79 (12), 3754-3758. 53. Nguyen, V. H.; Lee, B.-J., Protein corona: a new approach for nanomedicine design. International Journal of Nanomedicine 2017, 12, 3137-3151. 54. 林呈穎, 固定化胰蛋白酶於蛋白質水解效率之研究. 國立東華大學 2011. 55. 廖偉傑, 磁性奈米粒子輔助萃取配合液相層析串聯質譜法分析細菌蛋白質. 國立東華大學 2014.
|