帳號:guest(3.142.173.1)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Dameita Sumbayak
作者(英文):Dameita Sumbayak
論文名稱:Theoretical Analysis of Si (3P) + 1-butyne(CHCCH2CH3) Reaction
論文名稱(英文):Theoretical Analysis of Si (3P) + 1-butyne(CHCCH2CH3) Reaction
指導教授:張秀華
指導教授(英文):A. H. H. Chang
口試委員:梁剛荐
蔡政達
口試委員(英文):Max K. Leong
Jeng-Da Chai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610412021
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:107
關鍵詞:SiSilicon1-butyneCHCCH2CH3C4H6
關鍵詞(英文):SiSilicon1-butyneCHCCH2CH3C4H6
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
Theoretical analysis of atomic Si (3P) with 1-butyne (C4H6) reaction is necessary to be investigated for the interstellar chemistry of silicon. The interest of chemical bonding Silicon to Carbon grows significantly. Because of its low polarity and high bond strength, it is stable thermodynamically and kinetically. The objective of this research is to investigate the reaction between atomic Si (3P) and 1-butyne. The objective will be accomplished by,(1)determining the probable intermediates, transition states and the products,(2) proofing the transition states by calculation of Intrinsic reaction coordinates (IRCs),(3) calculating the reaction rate by Rice-Ramsperger-Kassel-Marcus (RRKM) Theory, and (4) Determining the concentration of products by branching ratio. The complex of C1 with lowest energy (-310.6 kJ/mol) and its isomer C1’ (-310.1 kJ/mol). The most probable products are obtained by dissociation of H2. The open chain products, such as 1p150+ H2( k = 2.70 x106 ) , 1p127+ H2( k = 2.70 x106 ), and 1p69+ H2 (4.82 x106) has calculated by RRKM. The concentration of those products has determined by calculating the branching ratio in various energy 0 kJ/mol, 25kJ/mol, and 30 kJ/mol. The fastest reaction in energy 30kJ/mol, the concentration of each product has determined, such as 1p150 (0.78), 1p127 (7.8 x 10-2), and 1p69 (0.15). There are nine most probable intermediates also has discussed clearly. The Intrinsic reaction coordinates (IRCs) has proved the reaction mechanism from complex to intermediates, intermediates to intermediates, complex to products, and intermediates to products. All the reactions are conducted in the singlet ground state potential energy surfaces for the stability.
ABSTRACT........................................................... i
I. INTRODUCTION.................................................... 1
I.1 Background..................................................... 1
I.2 objective ..................................................... 2
II. THEORITICAL METHODS............................................ 2
II.1 Reaction Path calculation .................................... 2
II.1.1 Rice-Ramsperger-Kassel-Marcus (RRKM) Theory................. 2
II.1.2 Complete Basis Set (CBS).................................... 3
III RESULT AND DISCUSSION.................................. 4
III.1 Reaction Paths on Singlet Potential Surface ................. 4
III.2 The most probable products .................................. 7
III.3 Products .................................................... 7
III.3The evolution of concentration with time...................... 8
IV CONCLUSION ............................................. 9
REFERENCES ....................................................... 10
APPENDICES ....................................................... 11
Table 1 .......................................................... 12
Table 2 .......................................................... 20
Table 3 .......................................................... 24
Figure 1 ......................................................... 25
Figure 2 ......................................................... 26
Figure 3 ......................................................... 27
Figure 4 ......................................................... 28
Figure 5 ......................................................... 29
Figure 6 ......................................................... 30
Figure 7 ......................................................... 31
Figure 8 ......................................................... 32
Figure 9 ......................................................... 33
Figure 10.a ...................................................... 72
Figure 10.b ...................................................... 74
Figure 11 ........................................................ 76
Figure 12 ........................................................ 77
Figure 13 ........................................................ 87
Figure 14 ........................................................ 96
(1) Finney, Brian.; Fang, Zongtang.; Francisco, Joseph S.; Dixon, David A. Dixon.Energetic Properties and Electronic Structure of [Si,N,S] and [Si,P,S] Isomers.J.Phys.Chem A.2016, 120, 1691−1697.
(2) Wang, Qiang. Ding,Yi-hong,; Sun,Chia-chung. Theoretical Study on Structures and Stabilities of [H3, Si, C, N] Isomers. J. Phys. Chem. A. 2004, 108, 10602-10608. (3) Langmuir,Irving.The Arrangement of Electrons in Atoms and Molecules. J. Am. Chem. Soc., 1919, 41 (6), 868–934
(4) Zdetsis,Aristides D. Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities.Nanoscale Research Letters.2011,6,362.
(5) Li,Bo-Ying,; Su,Ming-Der. Theoretical Investigations of the Reactions of Phosphino Disilenes and Their Derivatives with an EE (E = C, Si, Ge, Sn, and Pb) Double Bond. J.Phys.Chem A. 2012, 116, 9412−9420.
(6) Yang,Zhong-Zhi,; Ding, Yan-Li,; Zhao,Dong-Xia. Theoretical Analysis of Gas-Phase Front-Side Attack Identity SN2(C) and SN2 (Si) Reactions with Retention of Configuration. J. Phys. Chem. A 2009, 113, 5432–5445.
(7) Lauvergnat, David,; Hiberty,Philippe C,; Danovich,David,; Shaik, Sason,; Comparison of C-Cl and Si-Cl Bonds. A Valence Bond Study. J. Phys. Chem. 1996, 100, 5715-5720.
(8) Buriak,J.M. Organometallic Chemistry on Silicon and Germanium Surfaces. Chem.Rev.2002,102,1271.
(9) Wlodek,S,;Fox,A;Bohme,D.K. Gas-Phase Reactions of Si+( 2P) with Small Hydrocarbon Molecules: Formation of Silicon Carbon Bonds.J.Am.Chem.Soc.1991,113,4461-4468.
(10) Puniredd, Sreenivasa Reddy,; Assad, Ossama,; Haick, Hossam. Highly Stable Organic Modification of Si(111) Surfaces: Towards Reacting Si with Further Functionalities while Preserving the Desirable Chemical Properties of Full Si-C Atop Site Terminations. J. Am. Chem. Soc. 2008, 130, 9184–9185
11
(11) (a) A.D.Bechk.J.Chem.Phys.1993,98,5648; (b) 1992.96,2155; (c) 1992,97,9173; (d) C.lee,W.Yang,;and R.G.Parr.Phys.Rev.B.1988,37,785.
(12) George, D.Purvis,;Rodney J,Bartlett.A full coupled-cluster singles and doubles model-The inclusion of disconnected triples. J.Phys.Chem.1982,76,1910.
(13) R.S,Zhu,;M.C,Lin. CH3NO2 decomposition/Isomerization mechanism and Product branching ratios:An ab initio chemical kinetic study.Phy Chem Let.2009,478,11-16
(14) Peterson,K.A.; Woon, D. E.; Dunning,T.H.,Jr Benchmark Calculations with Correlated Molecular Wave functions. IV. The Classical Barrier Height of the H + H2 → H2 + H Reaction. J. Phys. Chem. 1994, 100, 7410−7415
(15) Peterson,K.A.;Dunning,T.H.,Jr Intrinsic Errors in Several ab initio Methods: The dissociation Energy of N2. J. Phys. Chem. 1995, 99, 3898−3901
(16) Cite this work as:
Gaussian 09, Revision E.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *