帳號:guest(18.189.186.165)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林照琦
作者(英文):Chao-Chi Lin
論文名稱:建立基因轉殖菸草表現木黴菌生物防治相關蛋白質及測試其抗病能力
論文名稱(英文):Establishing Transgenic Tobacco Plants Expressing Biological Control Related Proteins of Trichoderma harziana and Testing Their Antimicrobial Effect
指導教授:林國知
指導教授(英文):Kuo-Chih Lin
口試委員:彭國証
鄭綺萍
口試委員(英文):Kou-Cheng Peng
Chi-Ping Cheng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610413101
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:52
關鍵詞:木黴菌基因轉殖L-Amino acid oxidases(LAAO)Small protein 1(SM1)抗病原真菌
關鍵詞(英文):Trichoderma harzianum ETS323L-Amino acid oxidases(LAAO)Small protein 1(SM1)AntimicrobialTransgenic
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
Trichoderma spp.(木黴菌屬)是普遍存在於土壤中的絲狀真菌,可抑制各種植物病原真菌或誘導植物抗病反應的能力,故被廣泛用於生物防治植物病害。研究顯示Trichoderma spp.所分泌的胞外蛋白質,如Small protein 1 (ThSM1)及L-amino acid oxidase (ThLAAO)具有抗菌效果,但其抗病機制仍不清楚。本研究分為二部分。在第一部分研究中我們擬將PR1b-ThSM1基因轉殖於菸草並表現於細胞間隙,以模擬並探究ThSM1進入於植物內是否具有誘導植物抗病的能力及誘導抗性的可能途徑。實驗結果顯示PR1b-ThSM1基因轉殖菸草具有抑制灰黴菌(Botrytis cinerea B134)和菌核病菌(Sclerotinia sclerotiorum D5)生長能力,並誘導ROS相關基因、茉莉酸和乙烯合成基因及PR protein防禦基因的表現。先前實驗室游心喬學姊建構ThLAAO基因轉殖於菸草中(pThLAAO和pPRlb-ThLAAO載體),並發現ThLAAO基因轉殖株可抑制病原菌生長,然其誘導抗性的可能途徑並不清楚,故在第二部份實驗中擬探究其誘導抗性的途徑。以pThLAAO載體將ThLAAO基因轉殖於菸草表現可誘導ROS代謝相關基因、茉莉酸和乙烯合成基因的表現。然而、以pPR1b-ThLAAO載體將ThLAAO基因轉殖於菸草表現除了可誘導ROS代謝相關基因、茉莉酸和乙烯水楊酸合成基因表現外,也會誘導水楊酸合成基因及其下游PR protein防禦基因的表現。綜合上述實驗結果證明ThSM1及ThLAAO在基因轉殖株菸草內可抑制病原真菌的生長,且其誘導抗性的途徑可能經由Induced systemic resistance (ISR)誘導抗性。
Trichoderma spp., a filamentous fungi, is commonly found in soil. It can inhibit the growth of various plant pathogenic fungi by inducing plant disease resistance. Therefore, it is widely used in biological control of plant diseases. Several lines of evidences have shown that the extracellular small protein 1 (SM1) and L-Amino acid oxidas (ThLAAO) secreted by Trichoderma spp. exhibit antimicrobial effects. The mechanism of disease resistance, however, is still uclear. This study is divided into two parts. First, we transform the ThSM1 gene into tobacco and explore whether it can inhibit the growth of pathogenic fungi by inducing plant disease resistance. The results show that expression of PR1b-ThSM1 in transgenic tobacco inhibits the growth of Botrytis cinerea and Sclerotinia sclerotiorum, and furthermore, induces the production of reactive oxygen species (ROS), and expression of ROS metabolic genes, jasmoic acid (JA) and ethylene (ET) biosynthetic genes, and PR proteins. Secondly, we plane to elucidate the defense mechanism triggered by LAAO. The results reveal that expression of the ThLAAO gene in transgenic tobacco (L2) triggers ROS production and induces ROS metabolic、JA and ET biosynthetic gene expression. In contrast, in addition to ROS production and expression of ROS metabolic、JA and ET biosynthetic genes, expression of the PR1b-ThLAAO in transgenic tobacco (P10) triggers salicylic acid biosynthetic genes and downstream PR protein genes expression. Taken together, the above results demonstrate that expression of ThSM1 and ThLAAO in transgenic tobacco inhibits the growth of pathogenic fungi, and the defense mechanism involves induced systemic resistance (ISR).
中文摘要 I
英文摘要 III
一、前言 1
1.1 木黴菌(Trichoderma spp.) 1
1.1.1 木黴菌介紹 1
1.1.2 木黴菌分類與特性 1
1.1.3 木黴菌的生物防治功能 1
1.2 木黴菌產生具有誘導抗病能力的蛋白質 2
1.2.1 Small Protein 1 (SM1) 3
1.2.2 Trichoderma harzianum L-Amino acid oxidas (ThLAAO) 4
1.3 Trichoderma spp.所誘導的植物抗性 7
二、研究動機與目的 9
三、實驗設計 11
四、材料與實驗方法 13
4.1 植物材料 13
4.2 病原真菌品系 13
4.3 使用的引子與載體 13
4.4表現pPRlb-ThSM1載體的構築 13
4.4.1 PCR增殖出ThSM1和PRlb DNA 14
4.4.2 Overlapping PCR 14
4.4.3 TA-cloning 14
4.4.4以電穿孔(electroporation)方式進行大腸桿菌之轉型作用(Transformation) 15
4.4.5 以PCR分析檢測轉形株(Transformants) 15
4.4.6 質體DNA(plasmid DNA)萃取 16
4.4.7 限制酶(restriction enzyme)切割與酒精沉澱 16
4.4.8 製備dialysis tubing和gel extraction回收DNA 17
4.4.9 phenol/chloroform酒精沉澱 17
4.5農桿菌之轉型作用 17
4.6農桿菌媒介之基因轉殖法(Agrobacterium-mediated transformation) 18
4.7 抽取基因轉殖株菸草genomic DNA 19
4.8 以聚合酵素連鎖反應(Polymerase Chain Reaction, PCR)檢測轉殖基因 20
4.9抽取基因轉殖菸草植株total RNA 20
4.10 total RNA反轉錄成cDNA 21
4.11 以即時聚合酶鏈鎖反應(Real-time Polymerase Chain Reaction,Real-time PCR)檢測轉殖基因及抗病相關基因之表現量 21
4.12基因轉殖菸草對灰黴菌(Botrytis cinerea B134)和菌核病菌(Sclerotinia sclerotiorum D5)病原真菌之抗病能力 22
4.13偵測O2- 22
4.14偵測過氧化氫(H2O2) 23
4.15 H2O2拮抗試驗 23
4.16 LAAO偶聯FITC 24
4.17 LAAO-FITC與根作用 24
4.18 Protoplasts preparation 25
4.19 Protoplasts固定 25
4.20 Immunofluorescence labeling 26
4.21 H2DCF-DA偵測H2O2 26
4.22 LAA-FITC與protoplasts作用 27
4.23 共軛焦顯微鏡觀察 27
4.24 統計分析 27
五、結果 29
5.1 建立基因轉殖菸草表現木黴菌SM1蛋白質及測試其抗病能力 29
5.1.1建構SM1轉殖基因 29
5.1.2以農桿菌法進行基因轉殖 29
5.1.3以聚合酵素連鎖反應(Polymerase Chain Reaction, PCR)檢測轉殖株是否轉入目標基因 30
5.1.4以即時定量聚合酶鏈鎖反應(Real-Time Quantitative Polymerase Chain Reaction,RT-qPCR)檢測轉殖基因菸草的基因表現量 30
5.1.5轉殖基因菸草對灰黴菌(Botrytis cinerea B134)和菌核病菌(Sclerotinia sclerotiorum D5)病原真菌之抗病能力 30
5.1.6偵測SM1基因轉殖菸草誘導產生過氧化物O2-及H2O2 31
5.1.7以RT-qPCR偵測SM1轉殖菸草防禦基因(Defense genes)之表現 31
5.2 基因轉殖菸草表現木黴菌LAAO蛋白質及測試其防禦基因途徑 32
5.2.1 以RT-qPCR檢測轉殖基因菸草內LAAO基因表現量 32
5.2.2偵測基因轉殖菸草誘導產生超氧負離子(superoxide anion, O2-) 33
5.2.3以RT-qPCR偵測LAAO轉殖菸草防禦基因(Defense genes)之表現。 33
六、討論 35
七、總結 41
八、參考文獻 43

AdamsPB (1990) The potential of mycoparasites for biological control of plantdiseases. Annual review of phytopathology 28, 59-72.

Ali SA, Stoeva S, Abbasi A, Alam JM, Kayed R (2000) Isolation, structural,and functional characterization of an apoptosis-inducing L-amino acid oxidase from leaf-nosed viper (Eristocophis macmahoni) snake venom. Archives Biochemistry Biophysics 384(2), 216-226.

Alfano G, Lewis Ivey ML, Cakir C, Bos JIB, Miller SA (2007) Systemic Modulation of Gene Expression in Tomato by Trichoderma hamatum 382. The American Phytopathological Society 97, 429-437.
Armstrong AE, Zerbes R, Fournier PA, Arthur PG (2011) A fluorescent dual labeling technique for the quantitative measurement of reducedand oxidized protein thiols in tissue samples. Free Radical Biology and Medicine 50, 510–517.
Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Molecular Biology 69, 473–488.
Bloch CB, De Wit PJGM, Kuć J (1984) Elicitation of phytoalexins by arachidonic and eicosapentaenoic acids: a host survey. Physiological plant pathology 25(2), 199-208.
Brown WJ, Chambers K, Doody A (2003) Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4(4), 214-221.
Benhamou N (1996) Elicitor-induced plant defence pathways. Trends in Plant Science 1, 233–240.
Braga MDM, Martins AMC, Amora DN, De Menezes DB, Toyama M.H (2008) Purification and biologicaleffects of L-amino acid oxidase isolated from Bothrops insularisvenom. Toxicon 51, 199–207.
Buensanteai N, Mukherjee PK, Horwitz BA, Cheng C, DanGott LJ, Kenerley CM (2010) Expression and purification of biologically active Trichoderma virens proteinaceous elicitor Sm1 in Pichia pastoris. Protein Expression and Purification 72, 131-138.
Bansod S, Bawaskar M, Rai M (2014) Optimization of parameters for isolation of Viable Protoplasts by surgical paper tape tobacco leaf sandwich method and cell suspension culture of Nicotiana tabacum: A rapid and simple method of protoplasts isolation. Advanced Science Focus 2, 106–114.
Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic. Plant Signaling & Behavior 6, 10 1554-1563.
Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology 47, 289-297.
Ciscotto P, de Avila RAM, Coelho EAF, Oliveira J, Diniz CG (2009) Antigenic, microbicidal and antiparasitic properties of an l-amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon 53(3), 330-341.
Chakrabarty D, Datta SK (2008) Micropropagation of gerbera: lipid peroxidation and antioxidantenzyme activities during acclimatization process. Acta Physiologiae Plantarum 30, 325–331.
Chang Y (1986) Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Disease 70, 145-148.
Carsolio, C., N. Benhamou, S. Haran, C. Cortes, A. Gutierrez, I. Chet, A. Herrera-Estrella (1999) Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Applied and Environmental Microbiology 65(3), 929-935.
Cheng CH, Yang CA, Liu SY, Lo CT, Huang HC, Liao FC, Peng KC (2011) Cloning of a novel L-Amino Acid Oxidase from Trichoderma harzianum ETS 323 and bioactivity analysis of overexpressed L-Amino Acid Oxidase. Journal of Agricultural and Food Chemistry 59(17), 9142-9149.
Cheng CH, Yang CA, Liu SY, Lo CT, Peng KC (2012) L-Amino acid oxidase-induced apoptosis in filamentous Botrytis cinerea. Analytical Biochemistry 420(1), 93-95.
Crutcher FK, Moran-Diez ME, Ding S, Liu J, Horwitz BA, Mukherjee PK, Kenerley CM (2015) A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens. Fungal biology 119(6), 476-486.
Crutcher FK, Parich A, Schuhmacher R, Mukherjee PK, ZeilinGer S, Kenerley CM (2013) A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal genetics and Biology 56, 67-77.
Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Science 207, 79– 87.
Distefano G, La Malfa S, Vitale A, Lorito M, Deng Z (2008) Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Research 17, 873–879.
Delgado-Jarana J, Moreno-Mateos MÁ, Benítez T (2003) Glucose uptake in Trichoderma harzianum: role of gtt1. Eukaryotic cell 2(4), 708-717.
Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47(2), 55-64.
Doran PM (2006) Foreign protein degradation and instability inplants and plant tissue cultures. Trends in Biotechnology 24(9), 426-432.
Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceouselicitor secreted by the biocontrol fungus Trichoderma virens induces plantdefense responses and systemic resistance. Molecular Plant-Microbe Interactions 19, 838-853.
Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial funGus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiology 145, 875-889.
El-Sayed A, Shindia A, Zaher Y (2012) L-Amino acid oxidase from filamentous fungi: screening and optimization. Annals of Microbiology 62(2), 773-784.
Fravel DR (2005) Commercialization and implementation of biocontrol. Annual review of phytopathology 43, 337-359.
Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. European Journal of Plant Pathology 124, 219–230.
Gaderer R, Lamdan NL, Frischmann A, Sulyok M, Krska R, Horwitz BA, Seidl-Seiboth V (2015) Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiology 15,2
Hooft van Huijsduijnen RAM, Van Loon LC, Bol JF (1986) cDNA cloning of six mRNAs induced by TMV infection of tobacco and a characterization of their translation products. The EMBO Journal 5, 2057-2061.
Hjeljord LG, Stensvand A, Tronsmo A (2000) Effect of temperature and nutrient stress on the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor piriformis in greenhouse strawberries. Biological Control 19, 149-160.
Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species - opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2(1), 43-56.
Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158, 17–25.
Karolev N, Rav David D, Elad Y (2008) The role of phytohormones in basal
resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in
Arabidopsis thaliana. Biological Control 53, 667–682.
Lei R, Qiao W, Hu F, Jiang H, Zhu S (2015) A simple and effective method to encapsulatetobacco mesophyll protoplasts to maintain cellviability. MethodsX 2, 24–32.
Leivar Pablo, Gonza´lez VM, Castel S, Trelease RN, Lo´pez-Iglesias C(2005) Subcellular Localization of Arabidopsis3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase. Plant Physiology 137, 57–69.
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B(2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front. Plant Science 3, 1–25.
Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biological Control 67, 149–156.
Naseby DC, Pascual JA, Lynch JM (2000) Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum polulations, soil microbial communities and soil enzyme activities. Journal of Applied Microbiology l88(1), 161-169.
Okubo BM, Silva ON, Migliolo L, Gomes DG, Porto WF (2012) Evaluation of an antimicrobial L-Amino Acid Oxidase and peptide derivatives from Bothropoides mattogrosensis pitviper venom. PLOS ONE 7(3), e33639
Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nature chemical Biology 5, 308-316.
Perazzolli M, Dagostin S, Ferrari A, Elad Y, Pertot I (2008) Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biological Control 47, 28–234.
Prod'homme D, Panse S Le, Drugeon G, Jupin I (2001) Detection and subcellular localization of the turnip yellow mosaic virus 66K Replication Protein in Infected Cells. Virology 281, 88-101.
Pazzagli L, Cappugi G, Manao G, Camici G, Santini, A, Scala A (1999) Purification, characterization, and amino acid sequence of cerato-platanin, a new phytotoxic protein from Ceratocystis fimbriata f. sp. platani. The Journal of Biological Chemistry 274, 24959-24964.
Peng KC, Yang SL, Lo CT,Yang HH, Liu SY (2009) Inducedproteome of Trichoderma harzianum by Botrytis cinerea. Mycological Research 113, 924–932.
Pazzagli L, Seidl-Seiboth V, Barsottini M, Varga WA, Scalae A, Mukherjee PK (2014) Cerato-platanins: elicitors and effectors. Plant Science 228, 79-87.
Paiva RDA, Figueiredo RD, Antonucci GA, Paiva HH, M. Bianchi DP (2011) Cell cycle arrest evidence, parasiticidal and bactericidal properties induced by L-amino acid oxidase from Bothrops atrox snake venom. Biochimie 93(5), 941-947.
Pawelek PD, Cheah J, Coulombe R, Macheroux P, Ghisla S, Vrielink A (2000) The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. The EMBO Journal 19(16), 4204-4215.
Ponnudurai G, Chung MC, Tan NH (1994) Purification and properties of the L-amino acid oxidase from Malayan pit viper (Calloselasma rhodostoma) venom. Archives of Biochemistry and Biophysics 313(2), 373-378.
Raz V, Fluhr R (1993) Ethylene signal is transduced via protein phesphorylation events in plants. The Plant Cell 5, 523-530.
Raskin I (1992) Role of salicylic acid in plants. Annual review of plant biology 43, 439-463.
Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European Journal of Plant Pathology 131, 15–26.
Stiles BG, Sexton FW, Weinstein SA (1991) Antibacterial effects of different snake venoms: purification and characterization of antibacterial proteins from Pseudechis australis (Australian king brown or mulga snake) venom. Toxicon 29(9), 1129-1141.
Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R (2007) The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. The Plant Cell 19, 2213–2224.
Stohr C, Stremlau S (2006) Formation and possible roles of nitricoxide in plant roots. Journal of Experimental Botany 57, 463-470.
Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. The FEBS Journal 273(18), 4346-4359.
Sels J, Mathys J, De Coninck BMA, Cammue BP, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiology and Biochemistry 46, 941-950.
Takatsuka H, Sakurai Y, Yoshioka A, Kokubo T, Usami Y (2001) Molecular characterization of L-amino acid oxidase from Agkistrodon halys blomhoffii with special reference to platelet aggregation. Biochimica et Biophysica Acta 544(1-2), 267-277.
Takabatake R, Karita E, Seo S, Mitsuhara I, Kuchitsu K, Ohashi Y (2007) Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco. Plant and Cell Physiology 48(3), 414-423.
Torres AFC, Dantas RT, Menezes RRPPB, Toyama MH, Filho ED (2010) Antimicrobial activity of an L-amino acid oxidase isolated from Bothrops leucurus snake venom. Journal of Venomous Animals and Toxins including Tropical Diseases 16(4), 614-622.
Torii S, Yamane K, Mashima T, Haga N, Yamamoto K (2000) Molecular cloning and functional analysis of apoxin I, a snake venom-derived apoptosis-inducing factor with L-amino acid oxidase activity. Biochemistry 39(12), 3197-3205.
Van Loon LC (1985) Pathogenesis-related proteins. Plant Molecular Biology 4, 111-116.
Van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annual review of phytopathology 36, 453-483.
Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiology 151, 792-808.
Vallad G, Goodman RMF (2004) Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Science Society of America 44, 1920–1934.
Walters D, Walsh D, Newton A, Lyon G (2005) Induced Resistance for Plant Disease Control:Maximizing the Efficacy of Resistance Elicitors. The American Phytopathological Society 95, 1368-1373.
Xiao XD, Marzluf GA (1993) Amino-acid substitutions in the zinc finger of NIT2, the nitrogen regulatory protein of Neurospora crassa, alter promoter element recognition. Current Genetics 24(3), 212-218.
Yedidia I,Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil 235(2), 235-242.
Yang CA, Cheng CH, Lo CT, Liu SY, Lee JW, Peng KC (2011a) A Novel L-Amino Acid Oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. Journal of Agricultural and Food Chemistry 59, 4519–4526.
Yang CA, Cheng CH, Liu SY, Lo CT, Lee JW, Peng KC (2011b) Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichoderma harzianum ETS 323. The FEBS Journal 278(18), 3381-3394.
Yang CA, Cheng CH, Lee JW, Lo CT, Liu SY, Peng KC (2012) Monomeric L-amino acid oxidase-induced mitochondrial dysfunction in Rhizoctonia solaniReveals a novel antagonistic mechanism of Trichoderma harzianum ETS 323. Journal of Agricultural and Food Chemistry 60(10), 2464-2471.
Yang Y, Zhang H, Li G, Li W, Wang X, Song F (2009) Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis. Plant Biotechnology Journal 7, 763–777.
Zhang YI, Wang JH, Lee WH, Wang Q, Liu H, Zheng YT, Zhang Y (2003) Molecular characterization of Trimeresurus stejnegeri venom L-amino acid oxidase with potential anti-HIV activity, Biochem. Biophys. Biochemical and Biophysical Research Communications 309, 598-604.
Zhang X, Cheng T, Wang G, Yan Y, Xia Q (2013) Cloning and evolutionary analysis of tobacco MAPK gene family. Molecular Biology Reports 40, 1407–1415.
羅朝村and黃秀華 (2009) 木黴菌、病原菌與作物的三角關係. 科學發展443, 34-41.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *