帳號:guest(3.144.101.139)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:吳孟蓁
作者(英文):Meng-Zen Wu
論文名稱:S6K1調控攝護腺癌細胞中雄性素受器表現量及其生長能力之機制探討
論文名稱(英文):S6K1 regulates the expression of androgen receptors and the growth properties in prostate cancer cells
指導教授:袁大鈞
指導教授(英文):Ta-Chun Yuan
口試委員:彭致文
許榮欣
口試委員(英文):Chih-Wen Peng
Jung-Hsin Hsu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610413105
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:35
關鍵詞:雄性素受器攝護腺癌癌細胞生長能力
關鍵詞(英文):S6K1ARCIP2Aprostate cancer cells
相關次數:
  • 推薦推薦:0
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
攝護腺癌為國人男性十大癌症死因之第五位。究其致病機制,異常活化或過量表現的雄性素受器 (androgen receptor; AR) 為攝護腺細胞癌化的重要原因。我們過去的研究發現,S6K1 (p70 ribosomal S6 kinase 1)為一protein serine/threonine kinase,在攝護腺癌細胞中有過量的表現,並且AR 的蛋白質穩定性會受到S6K1的調控,但兩者之間的調控機制並未釐清。本實驗主要探討S6K1是否會調控CIP2A (Cancerous Inhibitor of Protein Phosphatase 2A) 及AR的表現量,進而影響細胞生長能力之調控關係。在比對正常攝護腺細胞PZ-HPV-7與攝護腺癌細胞22Rv1及LNCaP;此三株細胞內,S6K1、CIP2A與AR之蛋白表現量和磷酸化程度均呈現正相關性。為了更進一步確認S6K1與CIP2A及AR表現量,並攝護腺細胞生長的能力之間的關係,在LNCaP細胞中大量表現S6K1野生型(wild-type; WT)能使CIP2A的蛋白表現量上升,並使AR的蛋白表現與磷酸化程度升高;相反的,在LNCaP細胞中大量表現S6K1顯性抑制突變組 (dominant-negative mutant; K100R),以及在22Rv1與LNCaP細胞內以shRNA基因刪減 (knockdown) S6K1表現時,可發現CIP2A蛋白表現量下降,而AR的表現量與磷酸化程度也降低,且細胞生長能力受到抑制。當使用S6K1抑制劑PF-4708671對LNCaP細胞處理後,在濃度10 μM時,S6K1的活性與磷酸化程度受到抑制,且CIP2A和AR的表現量以及AR磷酸化程度皆下降。此外,在LNCaP與22Rv1細胞內刪減CIP2A表現,發現AR的蛋白表現量及磷酸化程度降低,並且其細胞生長能力下降。另外,以Dihydrotestosterone (DHT) 刺激LNCaP細胞導致AR活性 (以PSA表現量為證據) 和表現量明顯增加,同時S6K1及CIP2A的表現量也明顯上升,然而,投以AR抑制劑 Bicalutamide會削減DHT所促進之AR、S6K1及CIP2A之表現增加。藉由shRNA刪減AR表現量亦導致S6K1及CIP2A之表現量下降。由上述實驗結果可知,在攝護腺癌細胞內, S6K1、CIP2A與AR之間存在有交互調控其表現量之分子機制。
Prostate cancer (PCa) is one of the most troublesome diseases in Taiwanese males. Abnormally activation of androgens receptor (AR) cause the malignant transformation of PCa cells. Therefore, it is necessary to understand the relationship between the expression of AR and cells growth properties in PCa cells. Previous studies by our laboratory showed that the protein stability of AR is regulated by p70 ribosomal S6 kinase 1(S6K1), a serine/threonine kinase, but the mechanism between the two is not clarified. In this study, we explore the role of S6K1 in regulating the expression and activity of Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) and AR and the growth properties in PCa cells. We found that the correlation between S6K1, CIP2A and AR expression and phosphorylation in the normal progenitor cells (PZ-HPV-7) and the PCa cells (22Rv1 and LNCaP). Overexpression of the wild-type S6K1 in PZ-HPV-7 cells promotes their growth properties. Furthermore, overexpression of S6K1 in LNCaP cells promoted CIP2A and AR expression and AR phosphorylation. Conversely, knockdown of S6K1 expression in 22Rv1 or LNCaP cells cause reduced CIP2A expression and AR expression and phosphorylation as well as decreased cell growth. Treatment of 10 μM PF-4708671, a S6K1 inhibitor, in LNCaP cells cause the decreased phosphorylation or expression of S6K1, RPS6, CIP2A, PSA, and AR. In addition, knockdown of CIP2A expression in 22Rv1 or LNCaP cells led to reduced AR expression and phosphorylation. Interestingly, DHT can promote S6K1 and CIP2A expression in addition to AR activation, and DHT-promoted effects can be abolished by treatment of bicalutamide, an AR inhibitor. Knockdown of AR expression also caused decreased expression or phosphorylation of S6K1, RPS6, and CIP2A. In summary, our data supported the notion that among S6K1, CIP2A and AR existed the reciprocal regulation in their protein expression, which may cause the aberrant cell proliferation in PCa cells.
中文摘要---------I
Abstract--------II
縮寫對照表-------III
目錄------------IV
第一章、背景及重要性簡介--------------1
第二章、研究目的---------------------5
第三章、實驗設計---------------------7
第四章、實驗材料與方法----------------9
第五章、結果-----------------------15
第六章、討論-----------------------19
第七章、結論-----------------------21
第八章、未來研究--------------------23
第九章、圖表-----------------------25
第十章、參考文獻-------------------33
第十一章、附表---------------------35
1. Srinivas-Shankar U, Wu FC. Drug insight: testosterone preparations. Nature Reviews Urology 2006; 3: 653.
2. Shang Y, Myers M, Brown M. Formation of the androgen receptor transcription complex. Molecular cell 2002; 9: 601-610.
3. Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nature Reviews Cancer 2001; 1: 34.
4. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocrine reviews 2004; 25: 276-308.
5. Tan ME, Li J, Xu HE et al. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacologica Sinica 2015; 36: 3.
6. Dehm SM, Tindall DJ. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Molecular endocrinology 2007; 21: 2855-2863.
7. Lorente D, Mateo J, Zafeiriou Z et al. Switching and withdrawing hormonal agents for castration-resistant prostate cancer. Nature Reviews Urology 2015; 12: 37-47.
8. Liu X, Cao W, Qin S et al. Overexpression of CIP2A is associated with poor prognosis in multiple myeloma. Signal transduction and targeted therapy 2017; 2: 17013.
9. Khanna A, Pimanda JE, Westermarck J. Cancerous inhibitor of protein phosphatase 2A, an emerging human oncoprotein and a potential cancer therapy target. Cancer research 2013.
10. Barragán E, Chillón MC, Castelló-Cros R et al. CIP2A high expression is a poor prognostic factor in normal karyotype acute myeloid leukemia. haematologica 2015; 100: e183-e185.
11. Marabita M, Baraldo M, Solagna F et al. S6K1 is required for increasing skeletal muscle force during hypertrophy. Cell reports 2016; 17: 501-513.
12. Bärlund M, Forozan F, Kononen J et al. Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. Journal of the National Cancer Institute 2000; 92: 1252-1259.
13. Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochemical Journal 2012; 441: 1-21.
14. Sopheap P, Kupferwasser D, Joseph L, Lee-Fruman KK. Mutational analysis of ribosomal S6 kinase 2 shows differential regulation of its kinase activity from that of ribosomal S6 kinase 1. Biochemical Journal 2003; 373: 583-591.
15. Mukhopadhyay N, Price DJ, Kyriakis J et al. An array of insulin-activated, proline-directed serine/threonine protein kinases phosphorylate the p70 S6 kinase. Journal of Biological Chemistry 1992; 267: 3325-3335.
16. Jenö P, Ballou LM, Novak-Hofer I, Thomas G. Identification and characterization of a mitogen-activated S6 kinase. Proceedings of the National Academy of Sciences 1988; 85: 406-410.
17. Ferrari S, Bandi H, Hofsteenge J et al. Mitogen-activated 70K S6 kinase. Identification of in vitro 40 S ribosomal S6 phosphorylation sites. Journal of Biological Chemistry 1991; 266: 22770-22775.
18. Krieg J, Olivier AR, Thomas G. [39] Analysis of 40S ribosomal protein S6 phosphorylation during the mitogenic response. In Methods in enzymology. Elsevier 1988; 575-581.
19. Amaral CL, Freitas LB, Tamura RE et al. S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells. BMC cancer 2016; 16: 602.
20. Hsiao Y-H, Huang Y-T, Hung C-Y et al. PYK2 via S6K1 regulates the function of androgen receptors and the growth of prostate cancer cells. Endocrine-Related Cancer 2016; 23: 651-663.
21. Yamnik RL, Digilova A, Davis DC et al. S6 kinase 1 regulates estrogen receptor α in control of breast cancer cell proliferation. Journal of Biological Chemistry 2008.
22. Yang Y, Choi YA, Koo JS et al. Estradiol enhances CIP2A expression by the activation of p70 S6 kinase. Endocrine-related cancer 2013; ERC-13-0453.
23. Bhardwaj A, Singh S, Srivastava SK et al. Modulation of protein phosphatase 2A (PP2A) activity alters androgen-independent growth of prostate cancer cells: therapeutic implications. Molecular cancer therapeutics 2011; molcanther. 1096.2010.
24. Khanna A, Rane JK, Kivinummi KK et al. CIP2A is a candidate therapeutic target in clinically challenging prostate cancer cell populations. Oncotarget 2015; 6: 19661.
25. Lin HK, Wang L, Hu YC et al. Phosphorylation‐dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. The EMBO journal 2002; 21: 4037-4048.
26. Lai KP, Leong WF, Chau JFL et al. S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response. The EMBO journal 2010; 29: 2994-3006.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *