帳號:guest(3.15.192.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:吳俊德
作者(英文):Jyun-De Wu
論文名稱:多精胺酸胜肽作為牛樟芝基因轉型媒介之研究
論文名稱(英文):Studies of arginine-rich intracellular delivery peptides as the mediator for transformation of Antrodia cinnamomea
指導教授:周志青
指導教授(英文):Jyh-Ching Chou
口試委員:陳泓吉
許榮欣
周志青
口試委員(英文):Hong-Chi Chen
Jung-Hsin Hsu
Jyh-Ching Chou
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610413106
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:86
關鍵詞:牛樟芝原生質體再生穿透性胜肽多精氨酸胜肽非共價結合轉型
關鍵詞(英文):Antrodia cinnamomeaprotoplastregenerationcell-penetrating peptidearginine-rich intracellular delivery peptidesnoncovalent protein transductiontransformation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
牛樟芝為台灣特有種真菌,過去研究發現其富含一些具有藥理活性的化合物,具抗癌、醒酒與免疫調節等功用,隨著對這些成份深入研究,建立一套牛樟芝基因轉型系統顯得很重要。本實驗首先研究牛樟芝原生質體最佳化的製備方法,觀察各種可能影響原生質體消化產率的因素,例如菌絲培養時間、消化液酸鹼值與滲透壓穩定劑等,其次在原生質體再生方面,探討各種條件對原生質體再生的影響,包含不同培養基與滲透壓等,另外,本實驗發現到酸鹼值可能為牛樟芝原生質體再生的重要因素,並提供了一套牛樟芝原生質體再生系統。

在完成牛樟芝原生質體的製備與再生實驗後,繼續探討真菌的基因轉型,目前所有的真菌基因轉型實驗中,都可發現各自的缺點,例如高細胞毒性、轉型效率差與儀器門檻高等,根據過去的研究顯示,多精氨酸胜肽具有穿透細胞膜的特性,與低細胞毒性與高轉染效率等優點,廣泛的應用於動物細胞轉染實驗。本實驗依據這些特點應用在絲狀真菌上,首次以多精氨酸胜肽形成的複合物對真菌原生質體與菌絲進行基因轉型,成功的以複合物形式進入真菌原生質體與菌絲並表達目標基因性狀的紅色螢光;然而,結果顯示轉型後的菌絲無法生長在含抗生素的培養基中,轉型後的原生質體雖然可以使用具抗生素壓力的培養基篩選,但其菌株的菌絲抽取DNA後,跑PCR卻無法得到目標band,期待未來能進一步釐清此問題,從而建立一套快速且具有低毒性與高轉型效率的真菌基因轉型方法。
Antrodia cinnamomea is an endemic fungus of Taiwan. It carrys several medicinal effects, such as anti-cancer, anti-intoxication, anti-inflammation…etc. With the in-depth studies of the active ingredients, it is important to establish the genetic transformation system for further genetic studies. In this study. I would like to optimize the protocol for protoplast preparation and regeneration of A. cinnamomea. I observed various factors of affection in the protoplast preparation, such as mycelial age, pH value of digestion and osmotic stabilizer…etc. In the protoplast regeneration, I investigated the effects of various conditions, including different media ingradients and osmotic pressure…etc. I found that the pH value is a key factor in the regeneration of A. cinnamomea protoplasts. This experiment provides an optimal system for A. cinnamomea regeneration.

Various shortcomings have be found in fungal transformation experiments, such as high toxicity, poor transformation efficiency and expensive instrumentation. According to earlier studies, arginine-rich intracellular delivery peptides(AID peptides) have the property of penetrating cell membranes. The advantages of low cytotoxicity and high transfection efficiency make it widely used in animal cell transfection experiments. Thus, I am interested in applying the AID peptides for gene transformation in filamentous fungi. The fungal protoplasts and mycelia were first successfully expressed with the target fluorescence protein genes through AID peptide mediation. However, the mycelia of the transformation experiment could not grow in the media containing antibiotics indicating the permanent transgenic cells still unsuscessful. The transformed protoplasts did grow in media with antibiotics, but no target DNA detected with PCR screening. Further investigations are necessary to characterize these results.
壹、研究背景介紹 1
一、牛樟芝簡介與分類 1
二、成分與功效 1
1.多醣體 2
2.萜類 3
三、原生質體 4
四、真菌基因轉型方法 5
1.聚乙二醇介導轉型 5
2.醋酸鋰介導轉型 6
3.電穿孔法 6
4.基因槍轉型 7
5.農桿菌介導轉型 8
6.脂質體介導轉型 8
7.顯微注射法 9
8.奈米材料介導轉型 9
9.其他基因轉型方式 10
五、穿透性胜肽 11
1.穿透性胜肽之穿透機制 12
2.多精氨酸胜肽 13
3.穿透性胜肽在轉導上的應用 13
貳、研究目的 15
參、材料與方法 17
一、牛樟芝來源與培養 17
二、牛樟芝新生菌絲 17
三、勝任細胞製備與轉型作用 18
四、質體DNA製備與螢光標定 18
五、原生質體製備條件 19
1.菌絲體培養時間 19
2.消化液酸鹼值 19
3.消化液之滲透壓穩定劑 20
4.消化酵素濃度 20
六、原生質體固態培養之再生觀察 21
七、原生質體液態震盪培養之再生觀察 21
1.培養基滲透壓 21
2.培養基之營養源 22
3.培養基內含之citric acid濃度 22
4.培養基酸鹼值 22
5.培養基內含之citrate buffer, pH3濃度 23
八、R9/pDNA複合物製備 23
1.螢光標定pDNA之轉型複合物製備步驟 23
2.原生質體轉型之複合物製備步驟 24
3.菌絲體轉型之複合物製備步驟 24
九、螢光標定之R9/pDNA複合物對原生質體轉型 24
十、R9/pDNA複合物對原生質體轉型觀察 24
十一、轉型後的原生質體培養再生與觀察目標性狀 25
十二、R9/pDNA複合物對菌絲體轉型 25
十三、原生質體轉型後培養再生與抗生素篩菌 25
十四、PCR Primer設計與PCR流程 26
十五、螢光顯微鏡觀察 26
十六、原生質體計數與統計分析 27
肆、結果 29
一、牛樟芝原生質體最佳化之製備條件 29
1.菌絲體培養時間 29
2.消化液酸鹼值 29
3.消化液之滲透壓穩定劑 29
4.消化酵素濃度 30
二、牛樟芝原生質體固態培養再生之觀察 31
三、牛樟芝原生質體液態震盪培養再生之觀察 32
1.不同滲透壓對原生質體再生之影響 32
2.不同營養源培養基對原生質體再生之影響 32
3.不同citric acid濃度對原生質體再生之影響 32
4.不同酸鹼值對原生質體再生之影響 33
5.不同citrate buffer濃度對原生質體再生之影響 34
四、R9/pDNA複合物對牛樟芝原生質體轉型 35
1.螢光標定之R9/pDNA複合對原生質體轉型 35
2.R9/pDNA (pDs-CMV-dTomato)對原生質體轉型 35
3.原生質體轉型並液態震盪培養再生後之觀察 35
五、R9/pDNA複合物之牛樟芝菌絲體轉型 36
六、原生質體轉型後培養再生與抗生素篩菌 36
七、PCR 36
伍、討論 37
一、原生質體製備 37
二、原生質體再生 38
1.固態培養對原生質體再生之影響 39
2.液態震盪培養對原生質體再生之影響 40
三、R9/pDNA複合物製備與對牛樟芝原生質體轉型 44
四、R9/pDNA複合物直接對牛樟芝菌絲體轉型 46
五、轉型後之抗生素篩菌 48
1.菌絲體轉型後之篩菌 48
2.原生質體轉型後之篩菌 49
陸、圖表 51
柒、參考文獻 77
Alhakamy, N.A., Berkland, C.J., 2013. Polyarginine Molecular Weight Determines Transfection Efficiency of Calcium Condensed Complexes. Molecular pharmaceutics 10, 1940-1948.
Alhakamy, N.A., Dhar, P., Berkland, C.J., 2016. Charge Type, Charge Spacing, and Hydrophobicity of Arginine-Rich Cell-Penetrating Peptides Dictate Gene Transfection. Molecular Pharmaceutics 13, 1047-1057.
Arnau, J., Ortiz, A., Gomez-Fernández, J.C., Murillo, F.J., Torres-Martínez, S., 1988. Liposome-protoplast fusion in Phycomyces blakesleeanus. FEMS Microbiology Letters 51, 37-40.
Baker, L.G., Specht, C.A., Donlin, M.J., Lodge, J.K., 2007. Chitosan, the Deacetylated Form of Chitin, Is Necessary for Cell Wall Integrity in Cryptococcus neoformans. Eukaryotic Cell 6, 855-867.
Baoum, A.A., Berkland, C.J., 2011. Calcium condensation of DNA complexed with cell-penetrating peptides offers efficient, noncytotoxic gene delivery. Journal of pharmaceutical sciences 100, 1637-1642.
Biot-Pelletier, D., Martin, V.J.J., 2014. Evolutionary engineering by genome shuffling. Applied Microbiology and Biotechnology 98, 3877-3887.
Bowman, S.M., Free, S.J., 2006. The structure and synthesis of the fungal cell wall. BioEssays 28, 799-808.
Chai, R., Zhang, G., Sun, Q., Zhang, M., Zhao, S., Qiu, L., 2013. Liposome-mediated mycelial transformation of filamentous fungi. Fungal Biology 117, 577-583.
Chakraborty, B.N., Kapoor, M., 1990. Transformation of filamentous fungi by electroporation. Nucleic Acids Research 18, 6737.
Chang, F.-P., Kuang, L.-Y., Huang, C.-A., Jane, W.-N., Hung, Y., Hsing, Y.-i.C., Mou, C.-Y., 2013. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. Journal of Materials Chemistry B 1, 5279-5287.
Chang, T.T., Chou, W.N., 1995. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycological Research 99, 756-758.
Chaustova, L., Miliukienė, V., Zimkus, A., Razumas, V., 2008. Metabolic state and cell cycle as determinants of facilitated uptake of genetic information by yeast Saccharomyces cerevisiae, Open Life Sciences, p. 417.
Chaves Barreto, C., Cardoso Alves, L., Lima Aragão, F.J., Rech, E., Schrank, A., Henning Vainstein, M., 1997. High frequency gene transfer by microprojectile bombardment of intact conidia from the entomopathogenic fungus Paecilomyces fumosoroseus. FEMS Microbiology Letters 156, 95-99.
Chen, C.-C., Shiao, Y.-J., Lin, R.-D., Shao, Y.-Y., Lai, M.-N., Lin, C.-C., Ng, L.-T., Kuo, Y.-H., 2006. Neuroprotective Diterpenes from the Fruiting Body of Antrodia camphorata. Journal of Natural Products 69, 689-691.
Chen, C.-P., Chou, J.-C., Liu, B.R., Chang, M., Lee, H.-J., 2007a. Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Letters 581, 1891-1897.
Chen, J.-J., Lin, W.-J., Liao, C.-H., Shieh, P.-C., 2007b. Anti-inflammatory Benzenoids from Antrodia camphorata. Journal of Natural Products 70, 989-992.
Chen, X., Stone, M., Schlagnhaufer, C., Romaine, C.P., 2000. A Fruiting Body Tissue Method for Efficient Agrobacterium-Mediated Transformation of Agaricus bisporus. Applied and Environmental Microbiology 66, 4510-4513.
Cheng, J.-J., Chao, C.-H., Chang, P.-C., Lu, M.-K., 2014. Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea.
Christie, P.J., Gordon, J.E., 2014. The Agrobacterium Ti Plasmids. Microbiology spectrum 2, 10.1128/microbiolspec.PLAS-0010-2013.
Chu, Y.-C., Yang, R.-M., Chang, T.-T., Chou, J.-C., 2010. Fructification of Antrodia cinnamomea Was Strain Dependent in Malt Extract Media and Involved Specific Gene Expression. Journal of Agricultural and Food Chemistry 58, 257-261.
Chuang, C.-k., Tu, C.-F., Chen, C.-H., 2017. Generation of Mutant Pigs by Direct Pronuclear Microinjection of CRISPR/Cas9 Plasmid Vectors.
Copolovici, D.M., Langel, K., Eriste, E., Langel, Ü., 2014. Cell-Penetrating Peptides: Design, Synthesis, and Applications. ACS Nano 8, 1972-1994.
de Groot, M.J., Bundock, P., Hooykaas, P.J., Beijersbergen, A.G., 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16, 839-842.
Delorme, E., 1989. Transformation of Saccharomyces cerevisiae by electroporation. Applied and Environmental Microbiology 55, 2242-2246.
Deshayes, S., Karidia, K., Aldrian, G., Crombez, Heitz, F., Divita, G., 2010. Structural polymorphism of non-covalent peptide-based delivery systems: Highway to cellular uptake.
Dhawale, S.S., Paietta, J.V., Marzluf, G.A., 1984. A new, rapid and efficient transformation procedure for Neurospora. Current Genetics 8, 77-79.
Dobrowolska, A., Staczek, P., 2009. Development of transformation system for Trichophyton rubrum by electroporation of germinated conidia. Current Genetics 55, 537-542.
dos Reis, M.C.l., Pelegrinelli Fungaro, M.H., Delgado Duarte, R.T., Furlaneto, L., Furlaneto, M.C., 2004. Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana. Journal of Microbiological Methods 58, 197-202.
Duchardt, F., Fotin-Mleczek, M., Schwarz, H., Fischer, R., Brock, R., 2007. A Comprehensive Model for the Cellular Uptake of Cationic Cell-penetrating Peptides. Traffic 8, 848-866.
Eeckhaut, T., Lakshmanan, P.S., Deryckere, D., Van Bockstaele, E., Van Huylenbroeck, J., 2013. Progress in plant protoplast research. Planta 238, 991-1003.
Erazo-Oliveras, A., Muthukrishnan, N., Baker, R., Wang, T.-Y., Pellois, J.-P., 2012. Improving the Endosomal Escape of Cell-Penetrating Peptides and Their Cargos: Strategies and Challenges. Pharmaceuticals (Basel, Switzerland) 5, 10.3390/ph5111177.
Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L.L., Pepinsky, B., Barsoum, J., 1994. Tat-mediated delivery of heterologous proteins into cells. Proceedings of the National Academy of Sciences of the United States of America 91, 664-668.
Feng, H., Sun, Z., Li, H., Qin, P., Tang, C., Fu, R., Liu, Y., Li, P., Zheng, A., 2012. Preparation, purification and regeneration optimizing research of protoplasts from Rhizoctonia solani.
Filyak, Y., Finiuk, N., Mitina, N., Bilyk, O., Titorenko, V., Hrydzhuk, O., Zaichenko, A., Stoika, R., 2013. A novel method for genetic transformation of yeast cells using oligoelectrolyte polymeric nanoscale carriers. Biotechniques 54, 35-43.
Filyak, Y., Finiuk, N., Mitina, N., Zaichenko, A., Stoika, R., 2015. Application of Novel Polymeric Carrier of Plasmid DNA for Transformation of Yeast Cells, in: van den Berg, M.A., Maruthachalam, K. (Eds.), Genetic Transformation Systems in Fungi, Volume 1. Springer International Publishing, Cham, pp. 201-207.
Finer, J.J., Vain, P., Jones, M.W., McMullen, M.D., 1992. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11, 323-328.
Flowers, J.L., Vaillancourt, L.J., 2005. Parameters affecting the efficiency of Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola. Current Genetics 48, 380-388.
Frankel, A.D., Pabo, C.O., 1988. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189-1193.
Fuchino, K., Flärdh, K., Dyson, P., Ausmees, N., 2017. Cell-Biological Studies of Osmotic Shock Response in Streptomyces spp. Journal of Bacteriology 199, e00465-00416.
Gallmetzer, M., Burgstaller, W., Schinner, F., 1999. An Optimized Method for the Isolation of Protoplasts from Penicillium simplicissimum to Produce Sealed Plasma Membrane Vesicles.
Geethangili, M., Tzeng, Y.-M., 2011. Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evidence-Based Complementary and Alternative Medicine 2011, 17.
Geißenhöner, A., Sievers, N., Brock, M., Fischer, R., 2001. Aspergillus nidulans DigA, a potential homolog of Saccharomyces cerevisiae Pep3 (Vps18), is required for nuclear migration, mitochondrial morphology and polarized growth. Molecular Genetics and Genomics 266, 672-685.
Gow, N.A.R., Latge, J.P., Munro, C.A., 2017. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol Spectr 5.
Guidotti, G., Brambilla, L., Rossi, D., 2017. Cell-Penetrating Peptides: From Basic Research to Clinics.
Hao, Y., Yang, X., Shi, Y., Song, S., Xing, J., Marowitch, J., Chen, J., Chen, J., 2013. Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells. Botany 91, 457-466.
He, L., Feng, J., Lu, S., Chen, Z., Chen, C., He, Y., Yi, X., Xi, L., 2017. Genetic transformation of fungi. Int J Dev Biol 61, 375-381.
Herce, H.D., Garcia, A.E., Litt, J., Kane, R.S., Martin, P., Enrique, N., Rebolledo, A., Milesi, V., 2009. Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides. Biophysical Journal 97, 1917-1925.
Ho, Y.C., Lin, M.T., Duan, K.J., Chen, Y.S., 2008. The hepatoprotective activity against ethanol-induced cytotoxicity by aqueous extract of Antrodia cinnamomea. J Chin Inst Chem Eng 39, 441-447.
Huang, Y.-W., Lee, H.-J., M. Tolliver, L., Aronstam, R., 2015. Delivery of Nucleic Acids and Nanomaterials by Cell-Penetrating Peptides: Opportunities and Challenges.
Idnurm, A., Bailey, A.M., Cairns, T.C., Elliott, C.E., Foster, G.D., Ianiri, G., Jeon, J., 2017. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biology and Biotechnology 4, 6.
Ito, H., Fukuda, Y., Murata, K., Kimura, A., 1983. Transformation of intact yeast cells treated with alkali cations. Journal of Bacteriology 153, 163-168.
Jackson, S.L., 1995. Microinjection of fungal cells: a powerful experimental technique. Canadian Journal of Botany 73, 435-443.
Jones, A.T., 2007. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. Journal of Cellular and Molecular Medicine 11, 670-684.
Kato, T., Yamashita, H., Misawa, T., Nishida, K., Kurihara, M., Tanaka, M., Demizu, Y., Oba, M., 2016. Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids. Bioorg Med Chem 24, 2681-2687.
Kawai, S., Hashimoto, W., Murata, K., 2010. Transformation of Saccharomyces cerevisiae and other fungi: Methods and possible underlying mechanism. Bioengineered Bugs 1, 395-403.
Kawamoto, S., Takasu, M., Miyakawa, T., Morikawa, R., Oda, T., Futaki, S., Nagao, H., 2011. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: Importance of attractive force between cell-penetrating peptides and lipid head group. The Journal of Chemical Physics 134, 095103.
Kemppainen, M.J., Crespo, M.C.A., Pardo, A.G., 2011. Agrobacterium tumefaciens-Mediated Transformation of Ectomycorrhizal Fungi, in: Rai, M., Varma, A. (Eds.), Diversity and Biotechnology of Ectomycorrhizae. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 123-141.
Klebe, R.J., Harriss, J.V., Sharp, Z.D., Douglas, M.G., 1983. A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene 25, 333-341.
Kofer, W., Eibl, C., Steinmüller, K., Koop, H.-U., 1998. PEG-mediated plastid transformation in higher plants. In Vitro Cellular & Developmental Biology - Plant 34, 303-309.
Komoda, K., Naito, S., Ishikawa, M., 2004. Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts. Proceedings of the National Academy of Sciences of the United States of America 101, 1863-1867.
Kuwano, T., Shirataki, C., Itoh, Y., 2008. Comparison between polyethylene glycol- and polyethylenimine-mediated transformation of Aspergillus nidulans. Current Genetics 54, 95-103.
Lakshmanan, M., Kodama, Y., Yoshizumi, T., Sudesh, K., Numata, K., 2013a. Rapid and Efficient Gene Delivery into Plant Cells Using Designed Peptide Carriers. Biomacromolecules 14, 10-16.
Lakshmanan, S., Gupta, G., Avci, P., Chandran, R., Sadasivam, M., Jorge, A.E., Hamblin, M., 2013b. Physical Energy for Drug Delivery; Poration, Concentration and Activation.
Lee, C.-Y., Li, J.-F., Liou, J.-S., Charng, Y.-C., Huang, Y.-W., Lee, H.-J., 2011. A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase. Biomaterials 32, 6264-6276.
Lee, I.H., Huang, R.-L., Chen, C.-T., Chen, H.-C., Hsu, W.-C., Lu, M.-K., 2002. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects.
Lenardon, M.D., Munro, C.A., Gow, N.A.R., 2010. Chitin synthesis and fungal pathogenesis. Current Opinion in Microbiology 13, 416-423.
Lewin, M., Carlesso, N., Tung, C.-H., Tang, X.-W., Cory, D., Scadden, D.T., Weissleder, R., 2000. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotech 18, 410-414.
Li, S., Su, Y., Luo, W., Hong, M., 2010. Water−Protein Interactions of an Arginine-Rich Membrane Peptide in Lipid Bilayers Investigated by Solid-State Nuclear Magnetic Resonance Spectroscopy. The Journal of Physical Chemistry B 114, 4063-4069.
Lin, Y.-L., Ma, L.-T., Lee, Y.-R., Shaw, J.-F., Wang, S.-Y., Chu, F.-H., 2017. Differential Gene Expression Network in Terpenoid Synthesis of Antrodia cinnamomea in Mycelia and Fruiting Bodies. Journal of Agricultural and Food Chemistry 65, 1874-1886.
Liu, B.R., Chou, J.-C., Lee, H.-J., 2008. Cell Membrane Diversity in Noncovalent Protein Transduction. Journal of Membrane Biology 222, 1-15.
Liu, B.R., Lin, M.-D., Chiang, H.-J., Lee, H.-J., 2012a. Arginine-rich cell-penetrating peptides deliver gene into living human cells. Gene 505, 37-45.
Liu, B.R., Lo, S.-Y., Liu, C.-C., Chyan, C.-L., Huang, Y.-W., Aronstam, R.S., Lee, H.-J., 2013. Endocytic Trafficking of Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a Penetration Accelerating Sequence. PLoS ONE 8, e67100.
Liu, C.-J., Chiang, C.-C., Chiang, B.-H., 2012b. The elicited two-stage submerged cultivation of Antrodia cinnamomea for enhancing triterpenoids production and antitumor activity. Biochemical Engineering Journal 64, 48-54.
Liu, H., Jiao, X., Wang, Y., Yang, X., Sun, W., Wang, J., Zhang, S., Zhao, Z.K., 2017. Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation. FEMS Yeast Res 17.
Liu, J.-j., Huang, T.-S., Hsu, M.-L., Chen, C.-C., Lin, W.-S., Lu, F.-J., Chang, W.-H., 2005. Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action.
Lu, M.-C., El-Shazly, M., Wu, T.-Y., Du, Y.-C., Chang, T.-T., Chen, C.-F., Hsu, Y.-M., Lai, K.-H., Chiu, C.-P., Chang, F.-R., Wu, Y.-C., 2013. Recent research and development of Antrodia cinnamomea.
Lu, Z.-M., He, Z., Li, H.-X., Gong, J.-S., Geng, Y., Xu, H.-Y., Xu, G.-H., Shi, J.-S., Xu, Z.-H., 2014. Modified arthroconidial inoculation method for the efficient fermentation of Antrodia camphorata ATCC 200183. Biochemical Engineering Journal 87, 41-49.
Madani, F., Lindberg, S., Langel, Ü., Futaki, S., Gräslund, A., 2011. Mechanisms of Cellular Uptake of Cell-Penetrating Peptides. Journal of Biophysics 2011, 414729.
Mahapatra, S., Banerjee, D., 2013. Fungal Exopolysaccharide: Production, Composition and Applications. Microbiology Insights 6, 1-16.
Majzoub, R.N., Ewert, K.K., Safinya, C.R., 2016. Cationic liposome–nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374.
Malardier, L., Daboussi, M.J., Julien, J., Roussel, F., Scazzocchio, C., Brygoo, Y., 1989. Cloning of the nitrate reductase gene (niaD) of Aspergillus nidulans and its use for transformation of Fusarium oxysporum. Gene 78, 147-156.
Male, K.B., Rao, Y.K., Tzeng, Y.-M., Montes, J., Kamen, A., Luong, J.H.T., 2008. Probing Inhibitory Effects of Antrodia camphorata Isolates Using Insect Cell-Based Impedance Spectroscopy: Inhibition vs Chemical Structure. Chemical Research in Toxicology 21, 2127-2133.
Michielse, C.B., Hooykaas, P.J.J., van den Hondel, C.A.M.J.J., Ram, A.F.J., 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics 48, 1-17.
Misawa, N., 2011. Pathway engineering for functional isoprenoids. Current Opinion in Biotechnology 22, 627-633.
Morita, T., Habe, H., Fukuoka, T., Imura, T., Kitamoto, D., 2007. Convenient Transformation of Anamorphic Basidiomycetous Yeasts Belonging to Genus Pseudozyma Induced by Electroporation. Journal of Bioscience and Bioengineering 104, 517-520.
Morris, M.C., Deshayes, S., Heitz, F., Divita, G., 2008. Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biology of the Cell 100, 201-217.
Osińska-Jaroszuk, M., Jarosz-Wilkołazka, A., Jaroszuk-Ściseł, J., Szałapata, K., Nowak, A., Jaszek, M., Ozimek, E., Majewska, M., 2015. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World Journal of Microbiology and Biotechnology 31, 1823-1844.
Paietta, J.V., 2015. Transformation of Lithium Acetate-treated Neurospora crassa, in: van den Berg, M.A., Maruthachalam, K. (Eds.), Genetic Transformation Systems in Fungi, Volume 1. Springer International Publishing, Cham, pp. 193-197.
Pardo, A.G., Hanif, M., Raudaskoski, M., Gorfer, M., 2002. Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens. Mycological Research 106, 132-137.
Pareek, M., Sachdev, M., Tetorya, M., Rajam, M.V., 2015. Glass-Bead and Agrobacterium-Mediated Genetic Transformation of Fusarium oxysporum, in: van den Berg, M.A., Maruthachalam, K. (Eds.), Genetic Transformation Systems in Fungi, Volume 1. Springer International Publishing, Cham, pp. 169-174.
Parker, A., Newman, C., Briggs, S., Seymour, L., J Sheridan, P., 2003. Nonviral Gene Delivery: Techniques and Implications for Molecular Medicine.
Partida Martinez, L., Monajembashi, S., Greulich, K., Hertweck, C., 2007. Endosymbiont-Dependent Host Reproduction Maintains Bacterial-Fungal Mutualism.
Peberdy, J.F., 1979. Fungal Protoplasts: Isolation, Reversion, and Fusion. Annual Review of Microbiology 33, 21-39.
Perera, N., Yang, F.-L., Chang, C.-M., Lu, Y.-T., Zhan, S.-H., Tsai, Y.-T., Hsieh, J.-F., Li, L.-H., Hua, K.-F., Wu, S.-H., 2017. Galactomannan from Antrodia cinnamomea Enhances the Phagocytic Activity of Macrophages. Organic Letters 19, 3486-3489.
R Kikkert, J., Vidal, J., I Reisch, B., 2005. Stable transformation of plant cells by particle bombardment/biolistics.
Rakoczy-Trojanowska, M., 2002. Alternative methods of plant transformation--a short review. Cell Mol Biol Lett 7, 849-858.
Rehman, L., Su, X., Guo, H., Qi, X., Cheng, H., 2016. Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. BMC Biotechnology 16, 57.
Riquelme, M., Martínez-Núñez, L., 2016. Hyphal ontogeny in Neurospora crassa: a model organism for all seasons [version 1; referees: 3 approved].
Rivera, A.L., Magaña-Ortíz, D., Gómez-Lim, M., Fernández, F., Loske, A.M., 2014. Physical methods for genetic transformation of fungi and yeast. Physics of Life Reviews 11, 184-203.
Rodríguez-Tovar, A.V., Ruiz-Medrano, R., Herrera-Martínez, A., Barrera-Figueroa, B.E., Hidalgo-Lara, M.E., Reyes-Márquez, B.E., Cabrera-Ponce, J.L., Valdés, M., Xoconostle-Cázares, B., 2005. Stable genetic transformation of the ectomycorrhizal fungus Pisolithus tinctorius. Journal of Microbiological Methods 63, 45-54.
Rydström, A., Deshayes, S., Konate, K., Crombez, L., Padari, K., Boukhaddaoui, H., Aldrian, G., Pooga, M., Divita, G., 2011. Direct Translocation as Major Cellular Uptake for CADY Self-Assembling Peptide-Based Nanoparticles. PLOS ONE 6, e25924.
Schenborn, E.T., Oler, J., 2000. Liposome-Mediated Transfection of Mammalian Cells, in: Tymms, M.J. (Ed.), Transcription Factor Protocols. Humana Press, Totowa, NJ, pp. 155-164.
Schultzhaus, Z.S., Shaw, B.D., 2015. Endocytosis and exocytosis in hyphal growth. Fungal Biology Reviews 29, 43-53.
Scott, B.B., Velho, T.A., Sim, S., Lois, C., 2010. Applications of avian transgenesis. ILAR J 51, 353-361.
Shi, L., Chen, D., Xu, C., Ren, A., Yu, H., Zhao, M., 2017. Highly-efficient liposome-mediated transformation system for the basidiomycetous fungus Flammulina velutipes.
Shi, L., Fang, X., Li, M., Mu, D., Ren, A., Tan, Q., Zhao, M., 2012. Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum. World Journal of Microbiology and Biotechnology 28, 283-291.
Shoji, J.-y., Arioka, M., Kitamoto, K., 2008. Dissecting cellular components of the secretory pathway in filamentous fungi: insights into their application for protein production. Biotechnology Letters 30, 7-14.
Takeshita, N., 2016. Coordinated process of polarized growth in filamentous fungi. Bioscience, Biotechnology, and Biochemistry 80, 1693-1699.
Te'o, V.S.J., Bergquist, P.L., Nevalainen, K.M.H., 2002. Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels Hepta Adaptor system. Journal of Microbiological Methods 51, 393-399.
Tunnemann, G., Ter-Avetisyan, G., Martin, R.M., Stockl, M., Herrmann, A., Cardoso, M.C., 2008. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci 14, 469-476.
Vendeville, A., Rayne, F., Bonhoure, A., Bettache, N., Montcourrier, P., Beaumelle, B., 2004. HIV-1 Tat Enters T Cells Using Coated Pits before Translocating from Acidified Endosomes and Eliciting Biological Responses. Molecular Biology of the Cell 15, 2347-2360.
Veses, V., Richards, A., Gow, N.A.R., 2008. Vacuoles and fungal biology. Current Opinion in Microbiology 11, 503-510.
Wadia, J.S., Stan, R.V., Dowdy, S.F., 2004. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10, 310-315.
Wang, F., Wang, Y., Zhang, X., Zhang, W., Guo, S., Jin, F., 2013. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery.
Wu, S.-H., Ryvarden, L., Chang, T.-T., 1996. Antrodia camphorata (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan.
Wu, S., J Letchworth, G., 2004. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol.
Wubie, A., Hu, Y., Li, W., Huang, J., Guo, Z., Xu, S., Zhou, T., 2014. Factors Analysis in Protoplast Isolation and Regeneration from a Chalkbrood Fungus, Ascosphaera apis.
Yang, C.-M., Zhou, Y.-J., Wang, R.-J., Hu, M.-L., 2009. Anti-angiogenic effects and mechanisms of polysaccharides from Antrodia cinnamomea with different molecular weights.
Yeh, C.-T., Rao, Y., Yao, C.-J., Yeh, C.-F., Li, C.-H., Chuang, S., H.T. Luong, J., Lai, G.-M., Tzeng, Y.-M., 2009. Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells.
Yu, P.-W., Chang, Y.-C., Liou, R.-F., Lee, T.-H., Tzean, S.-S., 2016. pks63787, a Polyketide Synthase Gene Responsible for the Biosynthesis of Benzenoids in the Medicinal Mushroom Antrodia cinnamomea. Journal of Natural Products 79, 1485-1491.
Yu, Y., Shen, M., Song, Q., Xie, J., 2018. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers 183, 91-101.
Yue, P., Wong, Y.-Y., Yuk-Kit Chan, T., Ka-Man Law, C., Tsoi, Y.-K., Sze-Yin Leung, K., 2012. Review of Biological and Pharmacological Activities of the Endemic Taiwanese Bitter Medicinal Mushroom, Antrodia camphorata (M. Zang et C. H. Su) Sh. H. Wu et al. (Higher Basidiomycetes).
Zhu, X., Zhou, T., Chen, L., Zheng, S., Chen, S., Zhang, D., Li, G., Wang, Z., 2016. Arf6 controls endocytosis and polarity during asexual development of Magnaporthe oryzae. FEMS Microbiology Letters 363, fnw248-fnw248.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *