帳號:guest(18.225.254.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳俊霖
作者(英文):Jun-Lin Chen
論文名稱:應用於TDOA聲源定位之多平面幾何定位法
論文名稱(英文):Multiplanes geometric approach for sound source localization with TDOA
指導教授:孫宗瀛
指導教授(英文):Tsung-Ying Sun
口試委員:謝昇達
林君玲
口試委員(英文):Sheng-Ta Hsieh
Chun-Ling Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610423007
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:46
關鍵詞:聲源定位到達時間差偵測提升幾何定位穩定度
關鍵詞(英文):sound source localizationtime difference of arrival estimationestimated result enhancement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
利用多組感測器間的到達時間差(Time-Difference-of-arrival, TDOA)交集,估測聲源位置,理論上可獲得精確的聲源定位。但是,在現實應用中的取樣率造成的誤差,影響到達時間差使估測範圍偏移。誤差交互影響,在幾何定位訊號源估測位置產生偏移甚至無解。
本論文利用感測器陣列向量與其到達時間差關係的連等式,將聲源估測的範圍從原先的曲面改至平面。在幾何上多個平面比曲面更容易具有交集,且取樣誤差所造成的偏移影響較低,對於聲源位置的估測較不容易有空集合的現象。且加入了一個判斷式,在不少於五個感測器的情況下,可以藉由挑選合適的TDOA來估測較理想的結果。
經實驗模擬證明,本論文所提出的演算法能有效提升在幾何定位的估測成功率與穩定度,降低原先在取樣誤差影響下無法進行幾何定位的情況發生,且在多個感測器的情況下也能提升其估測精度。
The accurate sound source localization is to find the intersection of estimation range by TDOAs. However, the sample rate is not infinite in reality, the sample error in TDOAs makes the estimation range shift. The above error causes the source positioning offset or even no solution in geometric positioning. In order to solve the problem aforementioned, a novel geometric approach based on multiplanes is proposed.
In this thesis, the difference which the estimated range change from the conventional hyperboloids method to the multiplanes is proposed. By using the equation of the sensor array vector and its TDOAs. Geometrically, multiplanes are more likely to have intersections than hyperboloids, and the effect of error caused by sample error is lower, and the estimation of sound source position is less to have an empty set solution. And a discriminant is added in this study in the case of more than five sensors, t can be used to select a suitable TDOAs to estimate better solution.
The experimental simulation proves that this algorithm can effectively improve the estimation success rate and stability of geometric positioning, and reduce the situation that the original geometric methods cannot be performed under the influence of sample error, and in the case of multiple sensors. The estimation accuracy will also be improved.
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機 5
1-4 研究方法與貢獻 6
1-5 論文架構 7
第二章 TDOA的幾何定位 9
2-1 時間差偵測 9
2-1-1 相關性分析 9
2-1-2 估測時間差分析 10
2-2 定位演算法 14
2-3 取樣誤差的影響 16
第三章 多平面幾何定位法 19
3-1 多項等式聯立 19
3-2 限制條件 21
3-3 多感測器應用延伸 22
3-4 演算法流程 25
第四章 實驗模擬與數據 29
4-1 實驗說明 29
4-2 實驗結果 31
4-2-1 幾何定位的穩定性 31
4-2-2 精確度影響 34
4-2-3 多感測器應用 37
4-3 實驗討論 39
第五章 結論與未來工作 41
5-1 結論 41
5-2 未來工作 41
參考文獻 43
作者簡歷 47
[1] T. Latif, E. Whitmire, T. Novak, and A. Bozkurt, “Sound Localization Sensors for Search and Rescue Biobots,” IEEE Sensors Journal, vol. 16, no. 10, pp. 3444-3453, May15, 2016
[2] D. B. Haddad, W. A. Martins, M. d. V. M. da Costa, L. W. P. Biscainho, L. O. Nunes, and B. Lee, “Robust Acoustic Self-Localization of Mobile Devices,” IEEE Transactions on Mobile Computing, vol. 15, no. 4, pp. 982-995, April 1 2016.
[3] A. Ganguly, C. Reddy, Y. Hao, and I. Panahi, “Improving Sound Localization for Hearing Aid Devices Using Smartphone Assisted Technology,” 2016 IEEE International Workshop on Signal Processing Systems (SiPS), Dallas, TX, 2016, pp. 165-170.
[4] Y. Jang, J. Kim and J. Kim, “development of the vehicle sound source localization system,” 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hong Kong, 2015, pp. 1241-1244.
[5] X. Li, L. Girin, F. Badeig, and R. Horaud, “Reverberant sound localization with a robot head based on direct-path relative transfer function,” in Proceeding 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016, pp. 2819-2826.
[6] V. Tourbabin and B. Rafaely, “Direction of Arrival Estimation Using Microphone Array Processing for Moving Humanoid Robots,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, no. 11, pp. 2046-2058, Nov. 2015.
[7] C. H. Knapp and G. C. Carter, “The generalized correlation method for estimation of time delay,” IEEE Transaction on Acoustics, Speech, and Signal Processing, vol. 24, no. 4, pp. 320–327, Aug. 1976.
[8] Cha Zhang, D. Florencio, and Zhengyou Zhang, “Why does PHAT work well in lownoise, reverberative environments?,” in Proceeding 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, 2008, pp. 2565-2568.
[9] K. D. Donohue, J. Hannemann, and H. G. Dietz, “Performance of phase transform for detecting sound sources with microphone arrays in reverberant and noisy environments,” Signal Processing, vol. 87, no. 7, pp. 1677–1691, Jul. 2007.
[10] I. L. Freire and J. A. Apolinario, “DoA of gunshot signals in a spatial microphone array: Performance of the interpolated generalized cross-correlation method,” Argentine School of Micro-Nanoelectronics Technology and Applications (EAMTA), Buenos Aires, Argentina, pp. 1–6, Aug. 2011.
[11] A. Pourmohammad and S. M. Ahadi, “Real Time High Accuracy 3-D PHAT-Based Sound Source Localization Using a Simple 4-Microphone Arrangement,” IEEE Systems Journal, vol. 6, no. 3, pp. 455-468, Sept. 2012.
[12] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas Propagation, vol. AP-34, pp.276–280, Mar. 1986.
[13] R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via rotational invariance techniques,”IEEE Transactions on Acoustic, Speech, Signal Processing, vol. 37, pp.984–995, Jul. 1989.
[14] D. Yook, T. Lee and Y. Cho, “Fast Sound Source Localization Using Two-Level Search Space Clustering,” IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 20-26, Jan. 2016.
[15] D. Salvati, C. Drioli, and G. L. Foresti, “Sound Source and Microphone Localization From Acoustic Impulse Responses,” IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1459-1463, Oct. 2016.
[16] Y. Yang, X. Gu, and X. Wan, “Sound source localization method based on LDA classifier,” in Proceeding 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), Yangzhou, 2016, pp. 1-5.
[17] J. Velasco, D. Pizarro, J. Macias-Guarasa, and A. Asaei, “TDOA Matrices: Algebraic Properties and Their Application to Robust Denoising With Missing Data,” IEEE Transactions on Signal Processing, vol. 64, no. 20, pp. 5242-5254, Oct.15, 15 2016.
[18] J. DiBiase, H. Silverman, and M. Brandstein, “Robust localization in reverberant rooms,” Microphone Arrays Signal Processing Techniques and Applications, M. S. Brandstein and D. B. Ward, Eds. New York Springer-Verlag, 2001.
[19] J. O. Smith and J. S. Abel “Closed-form least-squares source location estimation from range-difference measurements,” IEEE Transaction on Acoustic, Speech, Signal Processing, vol. ASSP-35, pp.1661–1669, Dec. 1987.
[20] H. C. Schau and A. Z. Robinson, “Passive source localization employing intersecting spherical surfaces from time-of-arrival differences,” IEEE Transactions on Acoustic, Speech, Signal Processing, vol. ASSP-35, pp. 1223–1225, Aug. 1987.
[21] X. Alameda-Pineda and R. Horaud, “Geometrically-constrained robust time delay estimation using non-coplanar microphone arrays,” in Proceeding the 20th European Signal Processing Conference (EUSIPCO), Bucharest, 2012, pp. 1309-1313.
[22] X. Alameda-Pineda and R. Horaud, “A Geometric Approach to Sound Source Localization from Time-Delay Estimates,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 22, no. 6, pp. 1082-1095, June 2014.
[23] Tian-Xi Wu, Yu-Hsiang Yu, and Tsung-Ying Sun, “PSO-based Estimation for TDOA with Estimated Initial Values in a Reverberant Environment” in New Trends on System Sciences and Engineering, 1st ed., vol. 276, Hamido Fujita and Shun-Feng Su, Eds. Amsterdam: IOS press, 2015, pp. 31–43.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *