帳號:guest(3.14.254.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:吳彥廷
作者(英文):Yen-Ting Wu
論文名稱:應用於汽車雷達之高線性低功耗低雜訊放大器
論文名稱(英文):Design of High Linearity Low Power Low Noise Amplifiers for vehicle radar system Application.
指導教授:翁若敏
指導教授(英文):Ro-Min Weng
口試委員:彭盛裕
蕭志龍
口試委員(英文):Sheng-Yu Peng
Zhi-Long Xiao
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610423009
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:60
關鍵詞:低雜訊放大器平衡不平衡轉換器頻率調變連續波雷達寬頻
關鍵詞(英文):Low noise amplifierBalunFMCW radarLTE
相關次數:
  • 推薦推薦:0
  • 點閱點閱:44
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:44
  • 收藏收藏:0
本論文主要針對應用於無線通訊系統之低雜訊放大器進行研究與製作,並提出兩顆應用於不同頻帶系統的低雜訊放大器。

第一顆為應用於LTE頻段高增益單端轉雙端之低雜訊放大器使用GM-boost技術,LTE通訊系統操作頻率為0.7到2.7 GHz,此電路具有單端轉差動之設計,並利用gm-boosting技術提高增益,而頻寬也都有在3 dB內的平坦度。

第二顆為應用於汽車雷達的高線性低功耗之低雜訊放大器,汽車雷達的操作頻帶為24 GHz,第一級使用電容作gm-boosting使增益提高,而在第二級使用回授技術,使增益高點在24 GHz,並使用基底偏壓技術得到整體功耗下降。
This thesis mainly Research and production low noise amplifiers for wireless communication systems, and then to proposes two low noise amplifiers for different frequency band systems.

The first chip is proposed a high gain single to differential low noise amplifier using gm-boost technique for LTE systems that the system is operated at frequency 0.7-2.7 GHz. There is a circuit design with single to differential circuit, and increased the gain by gm-boosting technology, and then the bandwidth have 3 dB bandwidth.

The second chip is proposed a high linearity low power LNA using passive positive feedback technology from FMCW system that the system is operated at 24 GHz. The first stage uses a capacitor for gm-boosting to increase the gain, while in the second stage, make the gain in the high point at 24 GHz by feedback technology and the base bias technology is used to reduce the power consumption of the overall circuit.
中文摘要 i
Abstract ii
Content iv
List of Figures vi
List of Tables ix
Chapter 1 Introduction 1
1.1. Motivation 1
1.2. Introduction of LTE System 2
1.3. Introduction of K Band [2] 2
1.4. Introduction of Vehicle Radar System [3] 2
1.5. Receiver Architecture 3
Chapter 2 Introduction of Low Noise Amplifier 5
2.1. Introduction the basic parameters of LNA 5
2.1.1. Scattering Parameters 5
2.1.2. Noise Figure 6
2.1.3. Linearity 7
2.1.4. Stability 9
2.1.5. Phase Error [5] & Gain Error 11
2.2. Principles and architecture of Body-bias 12
2.3. Review of the Papers 12
2.3.1. A 0.2-2.6 GHz Wideband Noise-Reduction Gm-Boosted LNA [8] 12
2.3.2. A 3.7 mW 24 GHz LNA with 10.1dB gain and 4.5 dB NF in 0.18 m CMOS technology [9] 13
2.4. Design Flow 14
Chapter 3 Proposed LNA and Measured Results 17
3.1. A High Gain Single to Differential Low Noise Amplifier using Gm-boosting technique for LTE system 17
3.2. Input Impedance matching 18
3.3. Single to Differential circuit 19
3.4. Considerations of the Circuit Design 20
3.5. Simulation Results 21
3.6. Measured Results 34
3.7. Summary and Discussion 41
Chapter 4 Proposed LNA and Measured Results 42
4.1. A high linearity low power Low Noise Amplifier from Vehicle Radar system application 42
4.2. Input Impedance matching 43
4.3. Body bias technology 45
4.4. Considerations of the Circuit Design 46
4.5. Simulation Results 46
4.6. Measured Results 53
4.7. Summary and Discussion 56
Chapter 5 Conclusion and Future Work 58
5.1. Conclusion 58
5.2. Future Work 58
Reference 59
[1] O. Hidayov, I.-H. Jang, S.-K. Han, “A wide-band CMOS low noise amplifier for LTE application”, IEEE MTT-S International Microwave Workshop Series, Aug. 2011.
[2] T. Kanar, G. M. Rebeiz, “X- and K-Band SiGe HBT LNAs With 1.2- and 2.2-dB Mean Noise Figures”, IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 10, pp. 2381-2389, Oct. 2014.
[3] G. Pyo, J. Yang, C.-Y. Kim, “K-Band Dual-Mode Receiver CMOS IC for FMCW/UWB Radar”, IEEE Transactions on Circuits and Systems, vol. 61, no. 6, pp. 393-397, June. 2014.
[4] X. Guan, A. Hajimiri, “A 24-GHz CMOS Front-End”, IEEE Journal of Solid-State Circuits, vol. 39, pp. 368-373, Feb. 2004.
[5] J. Kim, J. S. Martinez, “Wideband Inductorless Balun-LNA Employing Feedback for Low-Power Low-Voltage Applications”, IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 2, pp. 2833-2842, July. 2012.
[6] K. Zhang, W. Li, F. Ye, “A 0.13-μm CMOS 0.8–10.6GHz low noise amplifier with active balun for multi-standard applications”, IEEE Microelectronics and Electronics, Oct. 2011.
[7] D. Wu, R. Huang, W. Wong, “A 0.4-V low noise amplifier using forward body bias technology for 5 GHz application”, IEEE Microwave and Wireless Components Letters, vol. 17, no. 7, pp. 543-545, July. 2007.
[8] H.-C. Lee, C.-S. Wang, C.-K. Wang, “A 0.2–2.6 GHz Wideband Noise-Reduction Gm-Boosted LNA”, IEEE Microwave and Wireless Components Letters, vol. 22, no. 5, pp. 269-271, May. 2012.
[9] J.-H. Lee, C.-C. Chen, Y.-S. Lin, “3.7 mW 24 GHz LNA with 10.1 dB gain and 4.5 dB NF in 0.18 m CMOS technology”, IET Electronics Letters, vol. 46, no. 19, pp. 1310-1312, Sep. 2010.
[10] 陳立惟,應用於超寬頻系統之單端轉差動低雜訊放大器,國立東華大學電機工程研究所碩士論文,2014
[11] P. Qin, Q. Xue, “A CMOS active balun-LNA with imbalance correction and noise cancelling”, IEEE International Workshop on Electromagnetics, May. 2016.
[12] O. A. Hidayov, N.-H. Nam, G. Yoon, S.-K. Han, S.-G. Lee, “0.7-2.7 GHz wideband CMOS low-noise amplifier for LTE application”, IEEE Electronics Letters, vol. 49, no. 23, pp. 1433-1435, Nov. 2013.
[13] 曾銘哲,使用0.18微米CMOS製程應用於無線通訊系統之低電壓射頻前端電路設計,國立東華大學電機工程研究所碩士論文,2013
[14] S. Pandey, J. Singh, “A 0.6 V low-power and high-gain ultrawideband low-noise amplifier with forwardbody- bias technique for low-voltage operations”, IET Microwaves, Antennas & Propagation, vol. 9, no. 8, pp. 728-734, June. 2015.
[15] B. Liu, G. Chen, Y. Chen, “A 24-GHz single-to-differential LNA for K-band receiver applications”, IEEE Microwave and Millimeter Wave Technology, June 2016.
[16] J. Dang, P. Sakalas, A. Noculak, “A K-band High Gain, Low Noise Figure LNA using 0.13 μm Logic CMOS Technology”, IEEE Microwave Integrated Circuits Conference, pp. 120-123, Sep. 2015.
[17] J. Xu, N. Yan, Q. Chen, “A 3.4 dB NF K-band LNA in 65nm CMOS technology”, IEEE International Symposium Circuits and Systems, pp. 1123-1126, May. 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *