帳號:guest(3.12.161.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳恩靖
作者(英文):En-Ching Chen
論文名稱:7奈米鰭式場效電晶體源極/汲極延伸 導致之變異性模擬
論文名稱(英文):Simulation on the variability caused by the source/drain extensions of 7-nm FinFETs
指導教授:劉耿銘
指導教授(英文):Keng-Ming Liu
口試委員:張睿達
何盈杰
口試委員(英文):Ruey-Dar Chang
Ying-Chieh Ho
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610423024
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:80
關鍵詞:鰭式場效電晶體源極/汲極延伸隨機摻雜波動
關鍵詞(英文):FinFETSource/Drain ExtensionRandom Dopant Fluctuations
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
在本論文中我們模擬通道長度7 nm的鰭式場效電晶體(FinFET)之源極/汲極延伸(Source/Drain Extension,SDE)效應和其隨機摻雜波動(Random Dopant Fluctuations,RDF)效應。首先我們改變SDE的長度與摻雜濃度來觀察其對元件特性的影響。接著我們模擬SDE的RDF效應以探討其所造成的元件變異性。模擬結果顯示增加SDE的長度或降低SDE的摻雜濃度有助於改善元件特性。此外,就元件變異性來說,增加SDE長度或降低其摻雜濃度雖使σVT、σION、σIOFF變小,但會使σION / ¯(I_ON )、σIOFF/¯(I_OFF )變大。不過若同時增加SDE長度且降低其摻雜濃度,可使σION / ¯(I_ON )、σIOFF/ ¯(I_OFF )很接近尚未改變SDE長度與摻雜濃度的元件,而且可獲得較佳的元件特性。
In this thesis, we simulate the effects of source/drain extension (SDE) of 7-nm FinFET and its random dopant fluctuations (RDF). First, we change the length and doping concentration of the SDE to observe their effects on the device characteristics. Then we simulated the RDF effect of SDE to examine the variability. Simulation results show that increasing the length of the SDE or decreasing the doping concentration of the SDE helps to improve the device characteristics. In addition, for variability, increasing the SDE length or decreasing the SDE doping concentration reduces σVT, σION, and σIOFF, but increases σION/(ION) and σIOFF/(IOFF). However, if both the SDE length and the SDE doping concentration are decreased, the σION/(ION) and σIOFF/(IOFF) can be very close to the values of the device whose SDE length and SDE doping concentration have not been altered, and better device characteristics can be obtained.
目錄
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 3
第二章 元件結構與模擬方法 5
2.1 元件結構 5
2.2 模擬方法 10
2.2.1 模擬流程介紹 10
2.2.2 元件特性模擬 12
2.2.3 SNmesh隨機亂數與粒子分佈 15
2.2.4 Sano model 17
第三章 模擬結果與討論 21
3.1 定義電特性 21
3.2 元件特性之比較 22
3.3 RDF效應對四個元件之影響 25
第四章 結論 29
參考文獻 31
附錄A 元件特性圖(100筆) 33
附錄B Sentaurus Process input file 37
附錄C Sentaurus Visual input file 67
附錄D Sentaurus Device input file 71
附錄E SNmesh(Sano Model) 79

[1] S. M. Nawaz, S. Dutta, A. Chattopadhyay, and A. Mallik, “Comparison of random dopant and gate-metal work function variability between junctionless and conventional FinFETs,” IEEE Electron Device Lett., vol. 35, no. 6, pp. 663–665, Jun. 2014.
[2] G. Leung and C. O. Chui, “Interactions between line edge roughness and random dopant fluctuation in nonplanar field-effect transistor variability,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3277–3284, Oct. 2013.
[3] Nurul Ezaila Alias, Rahimah Hassan, and Zaharah Johari, “Statistical Variability in n-channel SOI FinFET In The Presence of Random Discrete Dopant“ 2016 IEEE International Conference on Semiconductor Electronics, pp.232-235 Aug. 2016.
[4] N. Seoane, G. Indalecio, E. Comesana, M. Aldegunde, A. J. GarciaLoureiro, and K. Kalna, “Random Dopant, Line-Edge Roughness, and Gate Workfunction Variability in a Nano InGaAs FinFET”, IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 466–472, Feb. 2014.
[5] S. M. Nawaz and A. Mallik, “Effects of device scaling on the performance of junctionless FinFETs due to gate-metal work function variability and random dopant fluctuations, ”IEEE Electron Device Lett., vol. 37, no. 8, pp. 958–961, Aug. 2016.
[6] Changho Shin; Jeong-Kyu Kim; Gwang-Sik Kim; Hyunjae Lee; Changhwan Shin; Jong-Kook Kim; Byung Jin Cho; Hyun-Yong Yu, “Random Dopant Fluctuation-Induced Threshold Voltage Variation-Immune Ge FinFET With Metal–Interlayer–Semiconductor Source/Drain, “IEEE Transactions on Electron Devices, vol. 63, pp.4167-4172, Nov. 2016
[7 ]E. M Bazizi, A. Zaka, T. Herrmann, F. Benistant, J. H. M. Tin, J.P. Goh L. Jiang, M. Joshi, H. van Meer,and K. Korablev, ”USJ engineering impacts on FinFETs and RDF investigation using full 3D Process/Device simulation,” 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) , pp.25-28, Sept. 2014.
[8]G. Leung and C. O. Chui, “Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs,” IEEE Electron Device Lett., vol. 33, no. 6, pp. 767–769, Jun. 2012.
[9]N. Seoane, G. Indalecio, E. Comesaña, A. J. García-Loureiro, M. Aldegunde, and K. Kalna, “Three-dimensional simulations of random dopant and metal-gate workfunction variability in an In0.53Ga0.47As GAA MOSFET,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 205–207, Feb. 2013.
[10] Three-dimensional Simulations of 7 nm,available from TCAD Sentaurus Version L-2016.03 installation, go to Applications_Library/FinFET/FinFET_14nm.
[11] N. Sano et al., “On discrete random dopant modeling in drift-diffusion simulations: physical meaning of ‘atomistic’ dopants,” Microelectronics Reliability, vol. 42, no. 2, pp. 189–199, 2002.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *