帳號:guest(3.12.136.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:簡佑任
作者(英文):Yu-Jen Chien
論文名稱:太陽熱能輔助製備纖維乙醇與生命週期評估暨催化重組製氫研究
論文名稱(英文):Preparation of Cellulosic Ethanol by Solar Thermal Assisted and Life Cycle Assessment for Catalytic Reforming Hydrogen Production
指導教授:白益豪
指導教授(英文):Yi-Hao Pai
口試委員:林楚軒
陳孟炬
口試委員(英文):Chu-Hsuan Lin
Meng-Chu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610425015
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:61
關鍵詞:纖維乙醇碳足跡生命週期
關鍵詞(英文):Cellulosic EthanolHydrogenCarbon FootprintLife Cycle Assessment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:16
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
本研究主要是為發展東台灣區域合適性之纖維乙醇製備與製氫技術,同時也對纖維乙醇與氫氣之製造活動進行生命週期模型建置與評估,藉此有效研擬出最適切東台灣的低碳技術。
在第一部分的研究裡,我們主要藉由太陽能輔助蒸氣爆裂法與鹼處理法進行稻稈纖維素前處理作業,隨後經由酵母菌發酵轉換進行纖維乙醇製備。在建置稻稈產製纖維乙醇之生命週期評估模型方面,本次實驗導入太陽能設計來評估稻稈產製纖維乙醇之生命週期模型。研究結果指出淨能源投入0.13 MJ/公升,能源平衡率約為0.9303;但若將副產物轉換為生質電力再進行扣抵,所得能源平衡率約為1.2868;在碳足跡部分,二氧化碳淨排放量為19.38公克CO2。在蒸氣催化重組系統之熱效率評估與計算研究方面,有鑑於儲熱筒與系統的輸油管很難做到完全絕熱,故在集熱的過程亦會同時散熱,且散熱的參數對集熱溫度與集熱效率影響極大,經計算後系統最高之集熱能量約856.8 KJ。
在第二部分的研究裡,主要藉由聚光型太陽能輔助蒸氣重組與光催化重組來進行製氫之研究。並藉由生命週期評估法來探討評估整合的結果。在聚光型太陽能輔助蒸氣重組製氫研究方面,將能源的總產出除以總投入後可獲得本實驗的能源平衡率0.00022,由於其值遠小於1,代表其能源投入後沒有達到較高的能源產出; 此外研究也發現將催化重組製氫製程進行碳排放評估時,以實驗室規模每次的投入就會有-12.781g的碳排放。有鑑於製作纖維乙醇時碳排放量是包含生質電力扣抵,所以其淨碳排放係數為負值,因此整體總碳排放量為負值,其代表本實驗不會增加二氧化碳的排放,反而是減少二氧化碳的排放量。在光催化製氫研究方面,本次實驗氫氣總產出除以所投入總能源可得到能源平衡率為2.61×10-4至1.99×10-3皆遠小於1,代表投入的能源遠大於獲得的能源,因此再將纖維乙醇進行重組製氫於現階段尚不符合經濟效益。
This study is mainly for the development of suitable cellulosic ethanol production and hydrogen production technology in the East Taiwan region, as well as the life cycle assessment model construction and evaluation of the manufacturing activities of cellulosic ethanol and hydrogen. This will effectively develop the low-carbon technology that is most suitable for East Taiwan. In the first stage, the solar assisted steam reforming and alkali treatment method will are developed for the saccharification technology from hydrolysis of pretreated rice straw. Then, the cellulosic ethanol is obtained via the Saccharomyces Cerevisiae fermentation under anaerobic conditions. In building of life-cycle assessment models of the cellulosic ethanol, this study introduces the experimental design of using solar energy and develops Life Cycle Assessment Model for rice straw bio-ethanol production. The results show that net energy inputs are 0.13 MJ per liter. The Energy balance is about 0.9303; If the by-product is converted into biomass electrical energy and then deducted, the energy balance rate is about 1.2868. In the carbon footprint, net carbon dioxide emissions are 19.38 gram CO2 per liter. In assessed and calculated of the thermal efficiency of the steam catalytic recombination system, in view of the heat storage tube and the system of the pipeline is difficult to completely insulated, so in the process of collecting heat will also lose heat. The parameters of heat dissipation have great influence on the collector temperature and heat collection efficiency. After the calculation, the maximum collector energy is about 856.8 KJ. In the second part of the study, hydrogen production was mainly carried out by concentrating solar-assisted steam recombination and photocatalytic recombination. The results of the evaluation integration are explored by life cycle assessment. In the research of concentrating solar-assisted steam recombination hydrogen production, the Energy balance of this experiment can be obtained by dividing the total output of energy by the total input, which is 0.00022. Since its value is much less than 1, it means that it has not reached a higher level after its energy input. In the hydrogen production from catalytic reforming process for carbon emission assessment, there will be -12.781g of carbon emissions per laboratory input. In fact, the carbon emissions in the production of cellulosic ethanol are included in the biomass electronic energy deduction, the net carbon emission coefficient is negative, so the overall total carbon emissions are negative, which means that this experiment will not increase carbon dioxide emissions, but instead reduce carbon dioxide emissions. In the photocatalytic hydrogen generation, the total hydrogen output of this experiment divided by the total energy input can get the energy balance of 2.61×10-4 to 1.99×10-3, which is far less than 1, which means that the input energy is much larger than the energy obtained, so the recombination of Cellulosic ethanol into hydrogen is not economically beneficial at this stage.
第一章 序論 1
1-1 前言 1
1-2 液態醇生物燃料技術 4
1-3 液態醇催化重組製氫技術 7
1-5 研究的重要性與目的 10
第二章 纖維乙醇製備與特性研究 13
2-1 文獻回顧 13
2-2 研究目的與動機 16
2-3 實驗流程與方法 17
2-3-1 實驗架構流程圖 17
2-3-2 實驗 18
2-4 研究結果與討論 23
2-5 結果 25
第三章 纖維乙醇生產之生命週期評估法 27
3-1 文獻回顧 27
3-2 實驗與研究方法 30
3-2-1 研究方法 30
3-2-2 目標及範疇界定 30
3-2-3 太陽熱能之熱效率分析與催化重組系統熱效率計算 31
3-2-4 生命週期盤查分析 31
3-3 研究結果與討論 32
3-3-1 結果與討論 32
3-3-2 能源平衡率 32
3-3-3 溫室氣體排放量 34
3-3-4 太陽直射量與集熱能量計算 35
3-4 結果 37
第四章 纖維乙醇催化重組製氫研究 39
4-1 文獻回顧 39
4-2 實驗流程與方法 41
4-2-1 聚光型太陽能輔助蒸氣重組製氫研究 41
4-2-2 光催化重組製氫研究 44
4-3 實驗結果與討論 47
4-3-1 聚光型太陽能輔助蒸氣重組製氫研究 47
4-3-2 光催化重組製氫研究 48
4-3-3 結果與討論 50
4-4 討論 50
第五章 總結論 51
參考文獻 53
[1] S. Dunn, “Hydrogen futures: toward a sustainable energy system.” Int. J. Hydrog. Energy , 27 (2002) 235-264.
[2] 經濟部能源局,2014年能源產業技術白皮書。
[3] H. K. Abdel-Aal, K. M. Zohdy, M. A. Kareem, “Hydrogen Production Using Sea Water Electrolysis.” The Open Fuel Cells Journal, 3 (2010) 1-7.
[4] T. Wiedmann, J. Minx, “A Definition of Carbon Footprint.” Ecol. Econ., 7 (2007) 1-11.
[5] 李秉璋,“農業廢棄物資源化趨勢簡析”,台灣經濟研究院生物科技產業研究中心,(2013)。
[6] 陳文恆、郭家倫、黃文松、王嘉寶,“纖維酒精技術之發展”,農業生技產業季刊,第9期 (2007)。
[7] J. D. McMillan, 1994. Enyzmatic Conversion of Biomass for Fuels Production, p. 294-324, In M. E. Himmel, et al., eds. Enymatic Conversion of Biomass for Fuels Production, Vol. 566. ACS,Washington, DC.
[8] L. T. Fan, -H. Lee, D. H. Beardmore, “Major chemical and physical features of cellulosic materials as substrates for enzymatic hydrolysis.” Adv. Biochem. Eng., 14 (2005) 101-117.
[9] T. M. Wood, S. I. McCrae, K. M. Bhat, “The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose.” Biochem. J., 260 (1989) 37-43.
[10] P. Sannigrahi, S. J. Miller, A. J. Ragauskas, “Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine.”, Carbohydr. Res., 345 (2010) 965-970.
[11] T. Jeoh, C. I. Ishizawa, M. F. Davis, M. E. Himmel, W. S. Adney, D. K. Johnson, “Cellulase digestibility of pretreated biomass is limited by cellulose accessibility”, Biotechnol. Bioeng., 98 (2007) 112-122.
[12] H. Chen, S. Jin, “Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose.” Enzyme Microb. Technol., 39 (2006) 1430-1432.
[13] E. Varga, H. B. Klinke, K. Réczey, A. B. Thomsen, “High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol.”, Biotechnol. Bioeng., 88 (2004) 567-574.
[14] P. D. Vaidya, A. E. Rodrigues, “Insight into steam reforming of ethanol to produce hydrogen for fuel cells.”, Chem. Eng. J., 117 (2006) 39-49.
[15] L. V. Mattos, G. Jacobs, B. H. Davis, F. B. Noronha, “A review of kinetics, reaction mechanism and catalyst deactivation for syngas production from ethanol.”, Chem. Rev.,112 (2012) 4094-4123.
[16] J. L. Contreras, J. Salmones, J. A. Colın-Luna, L. Nuno, B. Quintana, I. Cordova, B. Zeifert, C. Tapia, G. A. Fuentes, “Catalysts for H2 production using the ethanol steam reforming (a review) ”, Int. J. Hydrog. Energy, 39 (2014) 18835-18853.
[17] K. -H. Lin, C. -B. Wang, S. -H. Chien, “Catalytic performance of steam reforming of ethanol at low temperature over LaNiO3”, Int. J. Hydrog. Energy, 38 (2013) 3226-3232.
[18] A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode” Nature, 238 (1972) 37-38.
[19] M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, “A review and recent developments in photocatalytic water splitting using TiO2 for hydrogen production.”, Renew. Sust. Energ. Rev., 11 (2007) 401-425.
[20] M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. M. Thomas, “A review and recent developments in photocatalytic water-splitting using for hydrogen production.” Catal. Today, 122 (2007) 51-61.
[21] G. -Y. Zhao, H. -L. Li, “Electrochemical oxidation of methanol on Pt nanoparticles composited MnO2 nanowire arrayed electrode”, Appl. Surf. Sci., 254 (2008) 3232-3235.
[22] J. Choi, S. Y. Ryu, W. Balcerski, T. K. Lee, M. R. Hoffmann, “Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light.” J. Mater. Chem., 18 (2008) 2371-2378.
[23] S. Chuetor, R. Luque, C. Barron, A. Solhy, X. Rouaua, A. Barakat, “Innovative combined dry fractionation technologies for rice straw valorization to biofuels.” Green Chem., 17 (2015) 926-936.
[24] Y. Li, B. Qi, J. Feng, Y. Zhang, Y. Wan, “Effect of combined inorganic with organic acids pretreatment of rice straw on its structure properties and enzymatic hydrolysis.” Environ. Prog. Sustain. Energy, 37 (2018) 808-814.
[25] T. A. L. Silva, H. D. Z. Zamora, L. H. R. Varão, N. S. Prado, M. A. Baffi, D. Pasquini, “Effect of Steam Explosion Pretreatment Catalysed by Organic Acid and Alkali on Chemical and Structural Properties and Enzymatic Hydrolysis of Sugarcane Bagasse.” Waste Biomass Valorization, 9 (2018) 2191-2201.
[26] G. ‐Z. Fan, Y. ‐X. Wang, G. ‐Sen. Song, J. ‐T. Yan, J. ‐F. Li, “Preparation of microcrystalline cellulose from rice straw under microwave irradiation.” J. Appl. Polym. Sci., 22 (2017) 44901.
[27] T. Auxenfans, D. Crônier, B. Chabbert, G. Paës, “Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment.” Biotechnol. Biofuels, 10 (2017) 36.
[28] P. K. Keshav, N. Shaik, S. Koti, V. R. Linga, “Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol.” Ind. Crop. Prod., 91 ( 2016) 323-331.
[29] D. D. Hsu, D. Inman, G. A. Heath, E. J. Wolfrum, M. K. Mann, A. Aden, “Life Cycle Environmental Impacts of Selected U.S. Ethanol Production and Use Pathways in 2022.” Environ. Sci. Technol., 44 (2010) 5289-5297.
[30] S. Kim, B. E. Dale, “Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel.” Biomass Bioenerg., 29 (2005) 426–439.
[31] M. R. Schmer, K. P. Vogel, R. B. Mitchell, R. K. Perrin, “Net energy of cellulosic ethanol from switchgrass.” Proc. Natl. Acad. Sci. U. S. A., 105 (2008) 464-469.
[32] T. Orikasa, K. Tokuyasu, T. Inoue, K. Kojima, “Effect of ethanol conversion efficiency on cost, CO2 emission and energy balance in the bioethanol production system from rice straw.” Journal of the Japanese Society of Agricultural Machinery, 71 (2009) 45-53.
[33] N. Koga, R. Tajima, “Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.” J. Environ. Manage., 92 (2011) 967-973.
[34] P. Roy, T. Orikasa, K. Tokuyasu, N. Nakamura, T. Shiina, “Evaluation of the life cycle of bioethanol produced from rice straws.” Bioresour. Technol., 110 (2012) 239-244.
[35] J. L. Shie, C. H. Lee, C. S. Chen, K. L. Lin, C. Y. Chang, “Scenario comparisons of gasification technology using energy life cycle assessment for bioenergy recovery from rice straw in Taiwan.” Energy Conv. Manag., 87 (2014) 156-163.
[36] S. Meihui, H. Chiahui, L. Wenyi, T. Chunto, L. Huusheng, “A Multi-Years Analysis of the Energy Balance, Green Gas Emissions, and Production Costs of First and Second Generation Bioethanol” Int. J. Green Energy, 12 (2015) 168-184.
[37] P. Börjesson, “Good or bad bioethanol from a greenhouse gas perspective - What determines this?.” Appl. Energy, 86 (2009) 589-594.
[38] S. Soam, M. Kapoor, R. Kumar, P. Borjesson, R. P. Gupta, D. K. Tuli, “Global warming potential and energy analysis of second generation ethanol production from rice straw in India.” Appl. Energy, 184 (2016) 353-364.
[39] A. Galli, T. Wiedmann, E. Ercin, D. Knoblauch, B. Ewing, St.Giljum, “Integrating Ecological, Carbon and Water footprint into a "Footprint Family" of indicators: Definition and role in tracking human pressure on the planet.” Ecol. Indic., 16 (2012) 100-112.
[40] K. Saga, K. Imou, S. Yokoyama, S. Fujimoto, T. Yanagida, T. Minowa. “Study on rice straw collection system for bioethanol production.” Journal of the Japanese Society of Agricultural Machinery, 26 (2008) 8-13.
[41] M. Guo, J. Littlewood, J. Joyce, R. Murphy,Murphy, “The environmental profile of bioethanol produced from current and potential future poplar feedstocks in the EU.” Green Chem., 16 (2014) 4680–4695.
[42] J. G. G. Jonker, H. M. Junginger, J. A. Verstegen, T. Lin, L. F. Rodríguez, K. C. Ting, A. P. C. Faaij, F. Hilst, “Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil.” Appl. Energy, 173 (2006) 494-510.
[43] K. M. Zech, K. Meisel, A. Brosowski, L. V. Toft, F. M. -Langer, “Environmental and economic assessment of the Inbicon lignocellulosic ethanol technology.” Appl. Energy, 171 2016
[44] V. Chaturvedi, P. Verma, “An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products.” 3 Biotech, 5 (2013) 415-431.
[45] A. Abraham, A. K. Mathew, R. Sindhu, A. Pandey, P. Binod, “Potential of rice straw for bio-refining: An overview.” Bioresour. Technol., 215 (2016) 29-36.
[46] D. J. Shetty, P. Kshirsagar, S. T. -Maheshwar, V. Lanjekar, S. K. Singh, P. K. Dhakephalkar, “Alkali pretreatment at ambient temperature: A promising method to enhance biomethanation of rice straw.” Bioresour. Technol., 226 (2017) 80-88.
[47] J. H.Song, S. Yoo, J. Yoo, S. Park, M. Y. Gim. T. H. Kim, I. K. Song, “Hydrogen production by steam reforming of ethanol over Ni/Al2O3-La2O3 xerogel catalysts” Mol. Catal., 343 (2017) 123-133.
[48] T. Nozawa, Y. Mizukoshi, A. Yoshida, S. Hikichi, S. Naito, “Formation of Ru active species by ion-exchange method for aqueous phase reforming of acetic acid.” Int. J. Hydrog. Energy, 42 (2017) 168-176.
[49] M. Galbe, G. Zacchi, “Pretreatment: The key to efficient utilization of lignocellulosic materials.” Biomass Bioenerg., 46 (2012) 70-78.
[50] G. Han, J. Deng, S. Zhang, P. Bicho, Q. Wue, “Effect of steam explosion treatment on characteristics of wheat straw.” Ind. Crop. Prod., 31 (2010) 28-33.
[51] Z. -H. Liu, L. Qin, F. Pang, M. -J. Jin, B. -Z. Li, Y. Kang, B. E. Dale, Y. -J. Yuan, “Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover.” Ind. Crop. Prod., 44 (2013) 176-184.
[52] C. -G. Liu, L. -Y. Liu, L. -H. Zi, X. -Q. Zhao, Y. -H. Xu, F. -W. Bai, “Assessment and regression analysis on instant catapult steam explosion pretreatment of corn stover.” Bioresour. Technol., 166 (2014) 368-372.
[53] P. Adapa, L. Tabil, G. Schoenau, “Physical and frictional properties of non-treated and steam exploded barley, canola, oat and wheat straw grinds.” Powder Technol., 201 (2010) 230-241.
[54] M. Karimi, R. Esfandiar, D .Biria, “Simultaneous delignification and saccharification of rice straw as a lignocellulosic biomass by immobilized Thrichoderma viride sp. to enhance enzymatic sugar production.” Renew. Energy, 104 (2017) 88-95.
[55] N. R. Baral, A. Shah, “Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover.” Bioresour. Technol., 232 (2017) 331-343.
[56] M. S. Romero-Güiza, R. Wahid, V. Hernández, H. Møller, B. Fernández, “Improvement of wheat straw anaerobic digestion through alkali pre-treatment: Carbohydrates bioavailability evaluation and economic feasibility.” Sci. Total Environ., 595 (2017) 651-659.
[57] C. Banoth, B. Sunkar, P. R. Tondamanati, B. Bhukya, “Improved physicochemical pretreatment and enzymatic hydrolysis of rice straw for bioethanol production by yeast fermentation.” 3 Biotech, 7 (2017) 334.
[58] W. Sui, H. Chen, “Water transfer in steam explosion process of corn stalk.” Ind. Crop. Prod., 76 (2015) 977-986.
[59] H. Chen, W. Qiu, “Key technologies for bioethanol production from lignocellulose.” Biotechnol. Adv., 28 (2010) 556-562.
[60] T. Sawada, Y. Nakamura, “Low energy steam explosion treatment of plant biomass.” J. Chem. Technol. Biotechnol., 76 (2001) 139-146.
[61] W. Sui, H. Chen, “Multi-stage energy analysis of steam explosion process.” Chem. Eng. Sci., 116 (2014) 254-262.
[62] M. Boonterm, S. Sunyadeth, S. Dedpakdee, P. Athichalinthorn. S. Patcharaphun, R. Mungkung, R. Techapiesancharoenkij, “Characterization and comparison of cellulose fiber extraction from rice straw by chemical treatment and thermal steam explosion.” J. Clean Prod., 134 (2016) 592-599.
[63] N. T. M. Phuong, P. H. Hoang, L. Q. Dien, D. T. Hoa, “Optimization of sodium sulfide treatment of rice straw to increase the enzymatic hydrolysis in bioethanol production.” Clean Technol. Environ. Policy, 19 (2017) 1313-1322.
[64] R. -H. Yeh, Y. -S. Lin, T. -H. Wang, W. -C. Kuan, W. -C. Lee, “Bioethanol production from pretreated Miscanthus floridulus biomass by simultaneous saccharification and fermentation.” Biomass Bioenerg., 94 (2016) 110-116.
[65] P. Ryden, Maria‑Nefeli Efthymiou, T. A. M. Tindyebwa, A. Elliston, D. R. Wilson,K. W. Waldron, P. K. Malakar, “Bioethanol production from spent mushroom compost derived from chaf of millet and sorghum.” Biotechnol. Biofuels, 10 (2017) 195.
[66] A. I. A1-Tabib, N. K. N. A1-Shorgani, H. A. Hasam, A. A. Hamid, M. S. Kalil, “Production of Acetone, Butanol, and Ethanol (ABE) by Clostridium acetobutylicum YM1 from Pretreated Palm Kernel Cake in Batch Culture Fermentation.” BioResources, 12 (2017) 3371-3386.
[67] S. McIntosh, T. Vancov, “Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment.” Bioresour. Technol. 101 (2010) 6718-6727.
[68] S. M. Raeisi, M. Tabatabaei, B. Ayati, A. Ghafari, S. H. Mood, “A Novel Combined Pretreatment Method for Rice Straw Using Optimized EMIM[Ac] and Mild NaOH.” Waste Biomass Valorization, 7 (2016) 97-107.
[69] Y. -L. Loow, T. Y. Wu, J. M. Jahim, A. W. Mohammad, W. H. Teoh, “Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment.” Cellulose, 23 (2016) 1491-1520.
[70] R. B. Nair, M. Kalif, J. A.Ferreira, M. J. Taherzadeh, P. R.Lennartsson, “Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes.” Bioresour. Technol. 245 (2017) 145-151.
[71] X. You, A. Heiningen, H. Sixta, M. Iakovlev, “Lignin and ash balances of sulfur dioxide-ethanol-water fractionation of sugarcane straw.” Bioresour. Technol. 224 (2017) 1111-1120.
[72] Z. Liu1, S. -H. Ho, K. Sasaki, R. Haan, K. Inokuma, C. Ogino, W. H. Zy, T. Hasunuma, A Kondo, “Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production.” Sci Rep, 6 (2016) 24550.
[73] S. Pal, S. Joy, P. Kumbhar, K. D. Trimukhe, A. J. Varma, S. Padmanabhan, “Effect of Mixed Acid Catalysis on Pretreatment and Enzymatic Digestibility of Sugar Cane Bagasse.” Energy Fuels, 30 (2016) 7310-7318.
[74] L. Myat, G. -H. Ryu, “Characteristics of destarched corn fiber extrudates for ethanol production.” J. Cereal Sci., 60 (2014) 289-296.
[75] Zahoor, Y. Tu, L. Wang, T. Xia, D. Sun, S. Zhou, Y. Wang, Y. Li, H. Zhang, T. Zhang, M. Madadi, L. Peng, “Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions.” Bioresour. Technol., 243 (2017) 319-326.
[76] S. Jin, H. Chen, “Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis.” Biochem. Eng. J., 30 (2006) 225-230.
[77] E. A. Skiba, O. V. Baibakova, V. V. Budaeva, I. N. Pavlov, M. S. Vasilishin, E. I. Makarova, G. V. Sakovich, E. V. Ovchinnikova, S. P. Banzaraktsaeva, N. V. Vernikovskaya, V. A. Chumachenko, “Pilot technology of ethanol production from oat hulls for subsequent conversion to ethylene.” Chem. Eng. J., 329 (2017) 178-186.
[78] H. Khaleghian, M. Molaverdi, K. Karimi, “Silica Removal from Rice Straw To Improve its Hydrolysis and Ethanol Production.” Ind. Eng. Chem. Res., 56 (2017) 9793-9798.
[79] M.Koyama, K.Watanabe, N. Kurosawa, K. Ishikawa, S. Ban, T. Toda, “Effect of alkaline pretreatment on mesophilic and thermophilic anaerobic digestion of a submerged macrophyte: Inhibition and recovery against dissolved lignin during semi-continuous operation.” Bioresour. Technol., 238 (2017) 666-674.
[80] Z. Xue, Z. Zhong, B. Zhang, J. Zhang, X. Xie, “Potassium transfer characteristics during co-combustion of rice straw and coal.” Appl. Therm. Eng., 124 (2017) 1418-1424.
[81] Q. Zhang, H. Huang, H. Han, Z. Qiu, V. Achal, “Stimulatory effect of in-situ detoxification on bioethanol production by rice straw.” Energy, 135 (2017) 32-39.
[82] A. Morone, T. Chakrabarti, R. A. Pandey, “Assessment of alkaline peroxide-assisted wet air oxidation pretreatment for rice straw and its effect on enzymatic hydrolysis.” Cellulose, 24 (2017) 4885-4898.
[83] S. -L. Sun, J. -L. Wen, M. -G. Ma, R. -C. Sun, “Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments.” Appl. Energy, 136 (2014) 519-526.
[84] R. Singh, M. Srivastava, A. Shukla, “Environmental sustainability of bioethanol production from rice straw in India: A review.” Renew. Sust. Energ. Rev., 54 (2016) 202-216.
[85] M. Pourbafrani, J. McKechnie, T. Shen, B. A. Saville, H. L.MacLean, “Impacts of pre-treatment technologies and co-products on greenhouse gas emissions and energy use of lignocellulosic ethanol production.” J. Clean Prod., 78 (2014) 104-111.
[86] A. Prasad, M. Sotenko, T. Blenkinsopp, S. R. Coles, “Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production.” Int. J. Life Cycle Assess., 21 (2016) 44-50.
[87] L. Wang, J. Littlewood, R. J.Murphy, “Environmental sustainability of bioethanol production from wheat straw in the UK.” Renew. Sust. Energ. Rev., 28 (2013) 715-725.
[88] J. C. Sinistore, D. J. Reinemann, R. C. Izaurralde, K. R. Cronin, P. J. Meier, T. M. Runge, X. Zhang, “Life Cycle Assessment of Switchgrass Cellulosic Ethanol
Production in the Wisconsin and Michigan Agricultural Contexts.” BioEnergy Res., 8 (2015) 897-909.
[89] T. Silalertruksa, S. H. Gheewala, “A comparative LCA of rice straw utilization for fuels and fertilizer in Thailand.” Bioresour. Technol., 150 (2013) 412-419.
[90] K. Saga, K. Imou, S. Yokoyama, T. Minowa, “Net energy analysis of bioethanol production system from high-yield rice plant in Japan.” Appl. Energy, 87 (2010) 2164-2168.
[91] J. McKechnie, M. Pourbafrani, B. A. Saville, H. L. MacLean, “Exploring impacts of process technology development and regional factors on life cycle greenhouse gas emissions of corn stover ethanol.” Renew. Energy, 76 (2015) 726-734.
[92] A. Mohammadi, A. L.Cowie, T. L.A. Mai, M. Brandão, R. A. Rosa, P. Kristiansen, S. Joseph, “Climate-change and health effects of using rice husk for biochar-compost: Comparing three pyrolysis systems.” J. Clean Prod., 162 (2017) 260-272.
[93] Y. -F. Huang, F. -S. Syu, P. -T. Chiueh, S. -L. Lo, “Life cycle assessment of biochar cofiring with coal.” Bioresour. Technol., 131 (2013) 166-171.
[94] J. Hill, E. Nelson, D. Tilman, S. Polasky, D. Tiffany, “Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.” Proc. Natl. Acad. Sci. U. S. A., 103 (2006) 11206-11210.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *