帳號:guest(3.137.189.226)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:胡羽昕
作者(英文):Yu-Shin Hu
論文名稱:溫度差異對植物花芽發育的影響
論文名稱(英文):The effect of rising temperature on flowering development
指導教授:陳毓昀
指導教授(英文):Yu-Yun Chen
口試委員:孫義方
陳香君
口試委員(英文):I-Fang Sun
Shiang-Jiuun Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學號:610454035
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:79
關鍵詞:開花物候花芽分化花芽發育都市熱島效應山櫻花烏來杜鵑大頭茶山芙蓉
關鍵詞(英文):flowering phenologyflower bud differentiationflower bud developmenturban heat island effectRhododendron kanehiraePrunus campanulataGordonia axillarisHibiscus taiwanensis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
開花是植物進入繁殖階段的首要環節,其過程主要分為三個階段:花創始(flower initiation)、花芽分化及發育(flower differentiation and development)和開花(flowering)。這些步驟的發生由植物開花基因群的表現決定,有些植物的開花基因受環境因子調控,當這些因子隨季節變動時,植物的開花時間也出現季節性的表現。隨著全球氣候變遷與都市化所造成的增溫現象,逐漸改變各種影響開花的環境條件,對仰賴氣候因子觸發開花的物種而言,這意味著植物開花時間的變動。另外,增溫現象對各季節的影響程度不同,對於花誘導與發育在不同時節的物種來說,將產生不一樣程度的壓力。為瞭解不同季節開花植物的花發育進程與對增溫現象之反應,本研究選定台北植物園(以下稱植物園)及烏來的信賢苗圃(以下稱苗圃),分別作為都市和郊區之代表樣區,藉由都市-郊區產生的溫差互為對照,進行一年的採樣及觀察。本研究觀察兩樣區內兩種春花型(春天開花)及兩種秋花型(秋天開花)物種的首綻日,並對其中三種進行花芽埋蠟切片,記錄由葉芽轉變為花芽,及各花器出現的時間點,以比較溫度差異對兩型植物花芽發育的影響。
兩個樣區內的溫度資料顯示,植物園樣區平均日均溫比苗圃樣區高2.6℃,溫差最大的季節為(3.1℃),溫差主要源於每日最低溫的差異。此外,研究期間僅台北測站9月底有連續18天的不降雨日,但未達中央氣象局對乾旱的定義,所以本研究排除乾旱對兩樣區花芽發育及開花的影響。我比較四個樹種過去一年內的首綻日,植物園(暖區)的個體較苗圃(冷區)早開花的樹種僅有大頭茶(秋花型)一種;烏來杜鵑(春花型)、山櫻花(春花型)、山芙蓉(秋花型)則皆以苗圃之個體開花較早,這與過去多數研究所報導「暖化導致花期提早」的現象不相符。早春開花的山櫻花為四個物種中花期變化最大的物種,兩地首綻日的差異可達1個月。透過本研究的切片結果,我發現春花型的物種在夏季就形成花芽,歷經約7個月的發育後於翌年春初開花。苗圃樣區的山櫻花在花萼、子房形成和開花三個階段較植物園的樣木有顯著提早的現象。苗圃樣區的烏來杜鵑在10月快速地的發育出花萼到雌蕊,以致兩地發育狀態有顯著差異。秋花型大頭茶雖然是唯一高溫樣區(植物園)較早開花的物種(一週),但兩地的花芽在各發育階段差異不顯著,其花芽形成到開花僅花費三個月。
Flower initiation and development are important steps in plant sexual reproduction of flowering plants. The processes to flowering could be divided into three phases: flower initiation, flower development and anthesis (flowering). These phases are determined by the genetic mechanisms, which could be autonomous or regulated by environmental factors, such as temperature, photoperiod, water availability and solar radiation, directly or indirectly. Among these factors, temperature is known to be the most common and important factor for many species. Previous records in various places showed that advanced or delayed flowering coincided with considerable warming. It is not clear which developmental phase is most sensitive to the environmental changes and could determine the change of flowering time. In order to identify crucial flower development stages that cause shift of flowering time in response to warming, this study selects the Taipei Botanical Garden (botanical garden), Taipei and Xinxian nursery (nursery) of Taiwan Forest Research Inistitute in Wulai, New Taipei district as study sites, to represent warm and cool sites, respectively. From these two study sites, I observed the first flowering dates of two spring bloomers (Rhododendron kanehirae and Prunus campanulata) and two autumn bloomers (Gordonia axillaris and Hibiscus taiwanensis). Three species were chosen for bud monitoring, except for Hibiscus taiwanensis. I collected 5 buds from each tree biweekly from May 2017 to June 2018. All buds were dissected to identify developmental stage.
Daily temperature data from the two sites showed that the effect of urban heat island caused higher mean air temperature, 2.6℃ on average, in the botanical garden compared to the nursery. During this study starting from April 1, 2017, the longest period without rain lasted for 18 consecutive days in late September. This does not meet the definition of drought by the Central Weather Bureau thus drought was not considered as an important influence on bud development in this study. I compared the first flowering day of the four target species. One autumn bloomer, Gordonia axillaris in botanical garden flowered earlier than that in nursery while the remaining species flowered earlier in the nursery. This is different from previous observation that warming leads to early flowering. Prunus campanulata exhibits the most obvious difference among the four species and the first flowering day differed for 1 month between these two sites. Bud dissection showed that the spring bloomers formed flower buds in summer, and bloom after 7 months of flower development. Bud development in Prunus campanulata was significantly delayed in the botanical garden in three stages: sepal formation, flower differentiation and flowering. In the cool site, Rhododendron kanehirae quickly developed calyx to pistil in October, so that the development stage of the two site was significantly different. Trends of change in the two autumn bloomers were inconsistent. Mean flower bud development stages of Gordonia axillaris showed no significant difference between two sites throughout the study.
摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 VII
表目錄 VIII
第一章 前言 1
第二章 文獻回顧 4
2.1 開花物候 4
2.3 都市微氣候變遷 11
第三章 材料與方法 14
3.1 研究樣區 14
3.2 氣象資料收集 14
3.3 開花物候觀察 15
3.4 切片製作及顯微觀察 16
3.5 資料處理與分析 17
第四章 結果 18
4.1 氣象資料 18
4.1.1 兩地氣象站之氣溫 18
4.1.2 樣區內HOBO溫度計之氣溫 21
4.1.3 兩地氣象站之雨量 25
4.2 開花物候 26
4.2.1 物候觀察 26
4.2.2 花芽發育進程 27
第五章 討論 38
參考文獻 42
附錄一 47
附錄二 51
1. 中央氣象局。2010。1897~2008台灣氣候變化統計報告。
2. 王玉婷、田玉娟、李孟諭、陳萬賓、王相華。2014。年初氣溫變化對於福山植物園栽植樹種花期之影響。台灣生物多樣性研究,16(1):63-76。
3. 王玉婷、林奐宇、陳建文、王相華。2015。由館藏標本探討溫度變化對台灣熱帶及溫帶植物花期之影響。台灣生物多樣性研究,17(1):15-27。
4. 伍淑惠。1999。台灣大學附設山地實驗農場梅峰地區植物相與植群之研究。國立臺灣大學森林學研究所碩士論文。台北市。
5. 江合隆。1991。台北植物園植物開花結實之觀察。現代育林,7(1):64-80。
6. 何豐吉。1968。恆春墾丁公園植物之開花結果時期以及花、果色彩之調查。台灣省立博物館年刊,11:84-107。
7. 呂理昌。1991。玉山國家公園東埔玉山區開花植物物候調查報告(一)(二)(三)。內政部營建署玉山國家公園管理處。
8. 宋馥華。1996。平戶杜鵑開花習性與花芽發育之研究。國立臺灣大學園藝學研究所碩士論文。台北市。
9. 李燕、李玲、李少旋、王慧、葉寶興、高東升。2011。高溫對設施櫻桃花器官發育的影響。中國農業科學,44(10):2101-2108。
10. 沈元月、郭家選、劉成連、賈克功。1999。溫度對桃花器官發育的影響。園藝學報,26:1-8。
11. 林志銓。1999。惠蓀林場木荷及大頭茶開花物候之研究。國立中興大學森林學系研究所碩士論文。台中市。
12. 林雅蘭。2006。烏來杜鵑之胚胎學。國立臺灣大學森林環境暨資源學系研究所碩士論文。台北市。
13. 邱祈榮。2016。山櫻花物候與氣候變遷適應性之研究。行政院國家科學委員會。
14. 孫振義、林憲德。2006。南地區都市熱島強度全年變動之研究。都市與計劃,33(1):51-68。
15. 張林仁、林嘉興。1994。枇杷之結果枝性狀與花芽分化。臺中區農業改良場特刊,34:37-49。
16. 張哲瑋、趙政男、陳右人、鄭正勇。1997。溫度及乾旱對荔枝開花的影響。中國園藝,43(4):322-329。
17. 陳毓昀。2013。太魯閣國家公園長期生態物候監測計畫。太魯閣國家公園管理處。
18. 陳溪潭。1994。荔枝枝梢生長與花穗形成之探討。臺南區農業改良場研究彙報,31:23-34。
19. 陳盟松。2013。芒果隔年結果原因之探討。臺中區農業改良場特刊,116:299-302。
20. 湯弘吉。1975。白花杜鵑之花芽研究。國立臺灣大學植物學研究所碩士論文。台北市。
21. 蔡淑華。1975。植物組織切片技術綱要。台北市:茂昌圖書有限公司。
22. 鄭武燦。2000。台灣植物圖鑑(上冊)。台北市:茂昌圖書有限公司。
23. 賴威爾。2013。台北市全年度氣候因子影響熱島效應分佈特性之研究。中國文化大學建築及都市設計學系碩士論文。台北市。
24. Bawa, K. S. 1983. "Patterns of flowering in tropical plant. " In Jones, C. E., and R. J. Little, (eds.) Handbook of Pollination Biology. Van Nostrand Reinhold Company. 394-410 Pp.
25. Beppu, K., T. Ikeda and I. Kataoka. 2011. Effect of high temperature exposure time during flower bud formation on the occurrence of double pistils in ‘Satohnishiki’ sweet cherry. Scientia Horticulturae 87: 77-84.
26. Caffarra, A., and A. Donnelly. 2011. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. International journal of biometeorology 55: 711-721.
27. Chen, X., L. Wang, and D. Inouye. 2017. Delayed response of spring phenology to global warming in subtropics and tropics. Agricultural and forest meteorology 234: 222-235.
28. Cook, B.I., E.M. Wolkovich and C. Parmesan. 2012. Divergent responses to spring andwinter warming drive community level flowering trends. Proceedings of the National Academy of Sciences of the United States of America 109: 9000-9005.
29. Ding, J., and O. Nilsson. 2016. Molecular regulation of phenology in trees—because the seasons they are a-changin’. Current Opinion in Plant Biology 29: 73-79.
30. Fitter, A., and R. Fitter. 2002. Rapid changes in flowering time in British plants. Science 296: 1689-1691.
31. Guimond, C. M., P. K. Andrews, and G. A. Lang. 1998. Scanning electron microscopy of floral initiation in sweet cherry. Journal of the American Society for Horticultural Science 123: 509-512.
32. Hepper, F. N. 2003. Phenological records of English garden plants in Leeds (Yorkshire) and Richmond (Surrey) from 1946 to 2002. An analysis relating to global warming. Biodiversity and Conservation 12: 2503–2520.
33. Horvath, D. 2009. Common mechanisms regulate flowering and dormancy. Plant Science 177: 523-531.
34. Jeong, J. H., C. H. Ho, H. W. Linderholm, S. J. Jeong, D. Chen, and Y. S. Choi. 2011. Impact of urban warming on earlier spring flowering in Korea. International Journal of Climatology 31: 1488-1497.
35. Koutinas, N., G. Pepelyankov, and V. Lichev. 2010. Flower induction and flower bud development in apple and sweet cherry. Biotechnology & Biotechnological Equipment 24: 1549-1558.
36. Marques, M. C., J. J. Roper, and A. P. B. Salvalaggio. 2004. Phenological patterns among plant life-forms in a subtropical forest in southern Brazil. Plant Ecology 173: 203-213.
37. Michaels, S. D., and R. M. Amasino. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11: 949-956.
38. Nelson, D. C., J. Lasswell, L. E. Rogg, M. A. Cohen, and B. Bartel. 2000. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331-340.
39. Ohashi, Y., H. Kawakami, Y. Shigeta, H. Ikeda, and N. Yamamoto. 2012. The phenology of cherry blossom (Prunus yedoensis “Somei-yoshino”) and the geographic features contributing to its flowering. International Journal of Biometeorology 56: 903-914.
40. Oke, T.R. 1982. The Energetic Basis of the Urban Heat Island. Quarterly Journal of the Royal Meteorological Society 108: 1-24
41. Primack, R. B., H. Higuchi, and A. J. Miller-Rushing. 2009. The impact of climate change on cherry trees and other species in Japan. Biological Conservation 142: 1943-1949.
42. Roberts, A.M.I., C. Tansey, R.J. Smithers, and A.B. Phillimore. 2015. Predicting a changein the order of spring phenology in temperate forests. Global Change Biology 21: 2603-2611.
43. Roetzer, T., and F.M. Chmielewski. 2000. Trends of the growingseason in Europe. Arbor Phaenol 43: 5-1516.
44. Sherry, R. A., X. Zhou, S. Gu, J. A. Arnone, D. S. Schimel, P. S. Verburg, L. L. Wallace, and Y. Luo. 2007. Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences 104: 198-202.
45. Shukla, R. P., and P. S. Ramakrishnan. 1982. Phenology of trees in a sub-tropical humid forest in north-eastern India. Vegetatio 49:103–109.
46. Sparks, T., E. Jeffree, and C. Jeffree. 2000. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. International Journal of Biometeorology 44: 82-87.
47. Tan, F. C., and S. M. Swain. 2006. Genetics of flower initiation and development in annual and perennial plants. Physiologia Plantarum 128: 8-17.
48. Ted DeJong (2014). http://fruitandnuteducation.ucdavis.edu/generaltopics/AnatomyPollination/VegetativeFloral_Development/
49. Tooke, F., and N. H. Battey. 2010. Temperate flowering phenology. Journal of Experimental Botany 61: 2853-2862.
50. Wilkie, J. D., M. Sedgley, and T. Olesen. 2008. Regulation of floral initiation in horticultural trees. Journal of experimental botany 59: 3215-3228.
51. Wilson, R. N., J. W. Heckman, and C. R. Somerville. 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant physiology 100: 403-408.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *