帳號:guest(3.16.135.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:盧加真
作者(英文):Chia-Chen Lu
論文名稱:人工合成雌激素EE2之環境暴露對眼斑海葵魚社會行為的影響
論文名稱(英文):Effects of 17α-ethynylestradiol (EE2) on social behavior of the false clown anemonefish (Amphiprion ocellaris)
指導教授:陳德豪
指導教授(英文):Te-Hao Chen
口試委員:翁國精
湯政豪
口試委員(英文):Guo-Jing Weng
Chen-Hao Tang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610463101
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:83
關鍵詞:人工合成雌激素內分泌干擾物海葵魚社會行為
關鍵詞(英文):17α-ethinylestradiol EE2endocrine disrupting chemicalsclownfishsocial behavior
相關次數:
  • 推薦推薦:0
  • 點閱點閱:115
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:73
  • 收藏收藏:0
文獻報告已證實人工合成雌激素‐17α乙炔雌二醇(17α-ethynylestradiol, EE2)在環境中廣泛存在並具有持久性以及內分泌干擾效應。EE2 常被應用於口服避孕藥、醫藥、化妝品、個人護理產品中。容易隨著人類活動或廢水排放進入環境水體,常可在旅遊活動興盛的沿岸地區被偵測到,目前已被視為海洋生態系統的新興污染物。許多珊瑚礁魚類獨特的社會結構是由敵對行為表現所調控,敵對行為會受到性荷爾蒙調控,EE2 可能透過擾亂性激素來影響魚類敵對行為,本研究透過環境暴露的方式來探討 EE2 對眼斑海葵魚(Amphiprion ocellaris)的內分泌干擾效應,並著重觀察在敵對行為和社會階級的影響。經過馴養並檢疫後,魚隻暴露在各 EE2 濃度下 28 天,分別為控制組(0 ng/ L )、低濃度組(3 ng/ L)和高濃度組(30 ng/ L),各組別眼斑海葵魚三隻個體為一組分配在獨立的缸子中以形成小群,每 7 天使用錄影機把其威嚇行為、屈服行為與遮蔽所利用率記錄並量化分析。在暴露實驗結束時,犧牲魚隻並採集海葵魚血漿,測量眼斑海葵魚血漿中的睪丸硬甾酮(11-KT)濃度。本實驗結果顯示,暴露 EE2 會影響眼斑海葵魚的社會表現,不論暴露濃度,皆觀察到行為一致性下降的現象。並在高濃度組 (30 ng/ L EE2)的結果發現,中間地位的個體對於威嚇對象的選擇性降低,位居主導地位的個體在暴露實驗後期展示屈服行為的頻率增加,在暴露實驗後期群體內威嚇行為增加等現象。表明主導階級的海葵魚侵略性弱化,以及中間階級個體對於評估雙方條件的能力下降,因此主導階級的個體可能必須花費更多時間及精力維持其地位與階級穩定。在 EE2 30 ng/L 組別也觀察到與主導地位相關的 11-KT 濃度減少。本實驗顯示EE2在環境濃度暴露下可能會影響群居珊瑚礁魚類的社會行為。
Previous studies have shown that the synthetic estrogen 17α-ethinylestradiol (EE2) can cause endocrine disrupting effects and is environmentally stable and lipophilic. EE2 is extensively used in oral contraceptive pills, medication, cosmetics, and personal care products. EE2 has been frequently detected in coastal areas and is now considered an emerging pollutant in marine ecosystems. Agonistic behavior is crucial to individual fitness and population social structure of coral reef fish. Endocrine disrupting chemicals may disturb fish agonistic behavior and social interactions by interfering sex hormone levels. In this study, we used an experimental approach to characterize the effects of EE2 on social behavior of the false clown anemonefish (Amphiprion ocellaris) via environmental exposure. The fish were exposed to EE2 at doses of 0, 3 and 30 ng/L for 28 days. The fish from each group were randomly distributed to separate tanks to form small colonies consisting of three individuals. During the exposure, agonistic behavior, submissive response and shelter utilization were recorded with video camera weekly and quantitatively analyzed. At the end of the experiment, the 11-ketotestone (11-KT) in the plasma of the fish were measured. Our results show that EE2 exposure affected social behaviors and behavioral consistency of the fish. In the 30 ng/L EE2 group, the second-ranked fish performed more agonistic behavior toward the dominant fish, while the dominant fish responded more tremble behavior. Intra-colonial agonistic interactions also increased in the later period of the exposure. The results suggest that the ability of the second-ranked individuals to assess opponents and the intensity of aggression performed by the dominant individuals were both reduced in the EE2 group. It may cost more time and energy for the dominant fish to maintain their dominancy. Concentrations of plasma 11-KT, which is associated with social hierarchy, were also reduced in the 30 ng/L EE2 group. This study demonstrates that environmental exposure of EE2 can affect social behavior and endocrine levels in coral fish.
第一章 前言.…………………………………………………..…………………….....1
1.1人工雌激素17α-ethynylestradiol…..……………………..1
1.2動物的社會行為與社會階級……………………….………………....4
1.3實驗動物………………………..……………...................4
1.4實驗目標………………………..…….....................5
第二章 材料及方法………………………..….................7
2.1實驗動物………………………..……………………….................7
2.2眼斑海葵魚 EE2 暴露實驗………………………..……………………….....7
2.2.1儲備溶液配置………………………..……………….................7
2.2.2暴露實驗設計………………………..…....................7
2.3行為分析………………………..………………......................8
2.4血漿中荷爾蒙測定……………………….......................9
2.5水中EE2濃度化學分析………………………..……………………….........10
2.6統計分析………………………..………………………......……...……...…..10
第三章 結果………………………..………………………......……...……...……..11
3.1暴露EE2存活率……………..………………………......……...……...…….11
3.1.1暴露3 ng/L EE2存活率……………..………………….……......…..……..11
3.1.2暴露30 ng/L EE2存活率……………..………………………......……...…12
3.2各階級體型……………..………………………......……...……...…………..13
3.2.1暴露3 ng/L EE2各階級體型……………..………………………..........13
3.2.2暴露30 ng/L EE2各階級體型…………..………………………............13
3.3 暴露3 ng/L EE2行為實驗…………..……………………….................15
3.3.1暴露3 ng/L EE2 總威嚇行為分析…………..………………………..........15
3.3.2暴露3 ng/L EE2 α階級威嚇行為分析………..……………………….......15
3.3.3暴露3 ng/L EE2 β階級威嚇行為分析………..……………………….......16
3.3.4暴露3 ng/L EE2 γ階級威嚇行為分析………..……………………….......16
3.3.7暴露3 ng/L EE2 總逃離行為分析 ………………………………………..21
3.3.7暴露3 ng/L EE2 α階級逃離行為分析...…………………………………..21
3.3.7暴露3 ng/L EE2 β階級逃離行為分析...…………………………………..22
3.3.8暴露3 ng/L EE2 γ階級逃離行為分析...…………………………………..22
3.3.9暴露3 ng/L EE2 總顫抖行為分析...………………………………………27
3.3.10暴露3 ng/L EE2 α階級顫抖行為分析…………………………………...27
3.3.11暴露3 ng/L EE2 β階級顫抖行為分析……………………………….…...28
3.3.12暴露3 ng/L EE2 γ階級顫抖行為分析…………………………………....28
3.3.13暴露3 ng/L EE2 進入遮蔽所持續時間………………………………......33
3.4 暴露30 ng/L EE2行為實驗.......35
3.4.1暴露30 ng/L EE2 總威嚇行為分析.....35
3.4.2暴露30 ng/L EE2 α階級威嚇行為分析....35
3.4.3暴露30 ng/L EE2 β階級威嚇行為分析.....36
3.4.4暴露30 ng/L EE2 γ階級威嚇行為分析......36
3.4.5暴露30 ng/L EE2 總逃離行為分析.......41
3.4.6暴露30 ng/L EE2 α階級逃離行為分析....41
3.4.7暴露30 ng/L EE2 β階級逃離行為分析....42
3.4.8暴露30 ng/L EE2 γ階級逃離行為分析.....42
3.4.9暴露30 ng/L EE2 總顫抖行為分析........47
3.4.10暴露30 ng/L EE2 α階級顫抖行為分析....47
3.4.11暴露30 ng/L EE2 β階級顫抖行為分析…...48
3.4.12暴露30 ng/L EE2 γ階級顫抖行為分析.....48
3.4.13暴露30 ng/L EE2 進入遮蔽所持續時間....53
3.5群體內社會行為表現趨勢....................55
3.6魚類內分泌生理分析.......................59
3.6.1暴露3 ng/L EE2睪丸硬甾酮(11-KT)濃度...59
3.6.2暴露30 ng/L EE2睪丸硬甾酮(11-KT)濃度..59
3.7水體中EE2濃度分析.......................61
第四章 討論…...............................63
4.1死亡率與體型差異........................63
4.2眼斑海葵魚社會行為......................65
4.2.1階級對行為的影響......................65
4.2.2暴露 EE2對眼斑海葵魚行為的影響.........66
第五章 結論................................71
參考文獻...................................73
陳健民,2008。環境毒理,台北縣,新文京開發出版社。
何源興,2009。小丑魚繁養殖,屏東縣,海洋生物博物館。
Allen, G.R., 1972. The anemonefishes: Their classification and biology, 2nd edition. Tropical Fish Hobbyist Publications Neptune city, New Jersey.
Ang, T.Z., Manica, A., 2010. Aggression, segregation and stability in a dominance hierarchy. Proceedings of the Royal Society B: Biological Sciences 277, 1337-1343
Aris, A.Z., Shamsuddin, A.S., Praveena, S.M., 2014. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environment International 69, 104-119.
Baatrup, E., Henriksen, P.G., 2015. Disrupted reproductive behavior in unexposed female zebrafish (Danio rerio) paired with males exposed to low concentrations of 17α-ethinylestradiol (EE2). Aquatic Toxicology 160, 197-204.
Bell, A.M., 2004. An endocrine disrupter increases growth and risky behavior in threespined stickleback (Gasterosteus aculeatus). Hormones and Behavior 45, 108-114.
Buston, P., 2003a. Forcible eviction and prevention of recruitment in the clown anemonefish. Behavioral Ecology 14, 576-582.
Buston, P., 2003b. Social hierarchies: Size and growth modification in clownfish. Nature 424, 145-146.
Buston, P.M., 2003c. Mortality is associated with social rank in the clown anemonefish (Amphiprion percula). Marine Biology 143, 811-815.
Buston, P.M., 2004. Territory inheritance in clownfish. Proceedings of the Royal Society of London. Series B: Biological Sciences 271, S252-S254.
Buston, P.M., Cant, M.A., 2006. A new perspective on size hierarchies in nature: patterns, causes, and consequences. Oecologia 149, 362-372.
Chen, C.-Y., Wen, T.-Y., Wang, G.-S., Cheng, H.-W., Lin, Y.-H., Lien, G.-W., 2007. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Science of The Total Environment 378, 352-365.
Chen, T.-H., Chen, Y.-L., Chen, C.-Y., Liu, P.-J., Cheng, J.-O., Ko, F.-C., 2015. Assessment of ichthyotoxicity and anthropogenic contamination in the surface waters of Kenting National Park, Taiwan. Environmental Monitoring and Assessment 187, 265.
Chen, T.-H., Hsieh, C.-Y., 2017. Fighting Nemo: Effect of 17α-ethinylestradiol (EE2) on aggressive behavior and social hierarchy of the false clown anemonefish Amphiprion ocellaris. Marine Pollution Bulletin 124, 760-766
Colman, J.R., Baldwin, D., Johnson, L.L., Scholz, N.L., 2009. Effects of the synthetic estrogen, 17α-ethinylestradiol, on aggression and courtship behavior in male zebrafish (Danio rerio). Aquatic Toxicology 91, 346-354.
Creel, S., 2001. Social dominance and stress hormones. Trends in Ecology & Evolution 16, 491-497.
De Mes, T., Zeeman, G., Lettinga, G., 2005. Occurrence and fate of estrone, 17β-estradiol and 17α-ethynylestradiol in STPs for domestic Wastewater. Reviews in Environmental Science and Bio/Technology 4, 275.
Duong, C.N., Ra, J.S., Cho, J., Kim, S.D., Choi, H.K., Park, J.-H., Kim, K.W., Inam, E., Kim, S.D., 2010. Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. Chemosphere 78, 286-293.
Dzieweczynski, T.L., Buckman, C.M., 2013. Acute exposure to 17α-ethinylestradiol disrupts audience effects on male–male interactions in Siamese fighting fish, Betta splendens. Hormones and Behavior 63, 497-502.
Dzieweczynski, T.L., Campbell, B.A., Marks, J.M., Logan, B., 2014. Acute exposure to 17α-ethinylestradiol alters boldness behavioral syndrome in female Siamese fighting fish. Hormones and Behavior 66, 577-584.
Dzieweczynski, T.L., Forrette, L.M., 2015. Timescale effects of 17α-ethinylestradiol on behavioral consistency in male threespine stickleback. Acta Ethologica 18, 137-144.
Dzieweczynski, T.L., Hebert, O.L., 2013. The effects of short-term exposure to an endocrine disrupter on behavioral consistency in male juvenile and adult siamese fighting fish. Archives of Environmental Contamination and Toxicology 64, 316-326.
Fautin, D.G., 1992. Anemonefish recruitment: the roles of order and chance. Symbiosis 14, 143-160.
Field, J., Shreeves, G., Sumner, S., 1999. Group size, queuing and helping decisions in facultatively eusocial hover wasps. Behavioral Ecology and Sociobiology 45, 378-385.
Filby, A.L., Paull, G.C., Searle, F., Ortiz-Zarragoitia, M., Tyler, C.R., 2012. Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: A mechanistic analysis. Environmental Science & Technology 46, 3472-3479.
Forette, L.M., Mannion, K.L., Dzieweczynski, T.L., 2015. Acute exposure to 17α-ethinylestradiol disrupts audience effect on male–female interactions in Betta splendens. Behavioural Processes 113, 172-178.
Forrester, G.E., 1990. Factors influencing the juvenile demography of a coral reef fish. Ecology 71, 1666-1681.
Fox, H.E., White, S.A., Kao, M.H.F., Fernald, R.D., 1997. Stress and dominance in a social Fish. The Journal of Neuroscience 17, 6463-6469.
Francis, R.C., Jacobson, B., Wingfield, J.C., Fernald, R.D., 1992. Castration lowers aggression but not social dominance in male Haplochromis burtoni (Cichlidae). Ethology 90, 247-255.
Fricke, H., Fricke, S., 1977. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266, 830.
Fricke, H.W., 1979. Mating system, resource defence and sex change in the anemonefish Amphiprion akallopisos. Ethology 50, 313-326.
Gadd, J.B., Tremblay, L.A., Northcott, G.L., 2010. Steroid estrogens, conjugated estrogens and estrogenic activity in farm dairy shed effluents. Environmental Pollution 158, 730-736.
Hamilton, I.M., Heg, D., Bender, N., 2005. Size differences within a dominance hierarchy influence conflict and help in a cooperatively breeding cichlid. Behaviour 142, 1591-1613.
Heg, D., Bender, N., Hamilton, I., 2004. Strategic growth decisions in helper cichlids. Proceedings of the Royal Society of London. Series B: Biological Sciences 271, S505-S508.
Hofmann, H.A., Fernald, R.D., 2000. Social status controls somatostatin neuron size and growth. The Journal of Neuroscience 20, 4740-4744.
Iwata, E., Manbo, J., 2013. Territorial behaviour reflects sexual status in groups of false clown anemonefish (Amphiprion ocellaris) under laboratory conditions. Acta Ethologica 16, 97-103.
Iwata, E., Nagai, Y., Hyoudou, M., Sasaki, H., 2008a. Social environment and sex differentiation in the false clown anemonefish, Amphiprion ocellaris. Zoological Science 25, 123-128.
Iwata, E., Nagai, Y., Sasaki, H., 2008b. Social rank modulates brain arginine vasotocin immunoreactivity in false clown anemonefish (Amphiprion ocellaris). Fish Physiology and Biochemistry 36, 337-345.
Jobling, S., Beresford, N., Nolan, M., Rodgers-Gray, T., Brighty, G.C., Sumpter, J.P., Tyler, C.R., 2002. Altered sexual maturation and gamete production in wild roach (Rutilus rutilus) living in rivers That receive treated sewage effluents. Biology of Reproduction 66, 272-281.
Jones, G.P., 1988. Experimental evaluation of the effects of habitat structure and competitive interactions on the juveniles of two coral reef fishes. Journal of Experimental Marine Biology and Ecology 123, 115-126.
Katoh, H.N.I.T.S., 1995. Effects of plant density on frequency distributions of plant height in chenopodium album stands: Analysis based on continuous monitoring of height-growth of individual plants. Annals of Botany 75, 173–180.
Kobayashi, M., Hattori, A., 2006. Spacing pattern and body size composition of the protandrous anemonefish Amphiprion frenatus inhabiting colonial host anemones. Ichthyological Research 53, 1-6.
Koebele, B.P., 1985. Growth and the size hierarchy effect: an experimental assessment of three proposed mechanisms; activity differences, disproportional food acquisition, physiological stress. Environmental Biology of Fishes 12, 181-188.
Kokko, H., Johnstone, R.A., 1999. Social queuing in animal societies: a dynamic model of reproductive skew. Proceedings of the Royal Society of London. Series B: Biological Sciences 266, 571-578.
Kumar, V., Nakada, N., Yamashita, N., Johnson, A.C., Tanaka, H., 2011. How seasonality affects the flow of estrogens and their conjugates in one of Japan’s most populous catchments. Environmental Pollution 159, 2906-2912.
Kuwamura, T., Nakashima, Y., 1998. New aspects of sex change among reef fishes: recent studies in Japan. in: Yuma, M., Nakamura, I., Fausch, K.D. (Eds.). Fish biology in Japan: an anthology in honour of Hiroya Kawanabe. Springer Netherlands, Dordrecht, pp. 125-135.
Lai, K.M., Johnson, K.L., Scrimshaw, M.D., Lester, J.N., 2000. Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environmental Science & Technology 34, 3890-3894.
Liu, S., Ying, G.-G., Zhou, L.-J., Zhang, R.-Q., Chen, Z.-F., Lai, H.-J., 2012. Steroids in a typical swine farm and their release into the environment. Water Research 46, 3754-3768.
Maclean, A., Metcalfe, N.B., 2001. Social status, access to food, and compensatory growth in juvenile Atlantic salmon. Journal of Fish Biology 58, 1331-1346.
Madsen, L.L., Korsgaard, B., Pedersen, K.L., Bjerregaard, L.B., Aagaard, T., Bjerregaard, P., 2013. Vitellogenin as biomarker for estrogenicity in flounder Platichthys flesus in the field and exposed to 17α-ethinylestradiol via food and water in the laboratory. Marine Environmental Research 92, 79-86.
Mark A. Hixon, Beets, J.P., 1993. Predation, Prey Refuges, and the Structure of Coral-Reef Fish Assemblages. Ecological Monographs 63, 77-101.
Matthews, S.A., Wong, M.Y.L., 2015. Temperature-dependent resolution of conflict over rank within a size-based dominance hierarchy. Behavioral Ecology 26, 947-958.
Moore, M.C., 1988. Testosterone control of territorial behavior: Tonic-release implants fully restore seasonal and short-term aggressive responses in free-living castrated lizards. General and Comparative Endocrinology 70, 450-459.
Moyer, J.T., 中園, 明., 1978. 三宅島におけるレンテンヤッコの社会構造
産卵行動と雌性先熟性転換. 魚類学雑誌 25, 25-39.
Munday, P.L., Buston, P.M., Warner, R.R., 2006. Diversity and flexibility of sex-change strategies in animals. Trends in Ecology & Evolution 21, 89-95.
Ochi, H., 1989. Acquisition of breeding space by nonbreeders in the anemonefish Amphiprion clarkii in temperate waters of southern Japan. Ethology 83, 279-294.
Pauwels, B., Wille, K., Noppe, H., De Brabander, H., Van de Wiele, T., Verstraete, W., Boon, N., 2008. 17α-ethinylestradiol cometabolism by bacteria degrading estrone, 17β-estradiol and estriol. Biodegradation 19, 683-693.
Peters, R.E.M., Courtenay, S.C., Cagampan, S., Hewitt, M.L., MacLatchy, D.L., 2007. Effects on reproductive potential and endocrine status in the mummichog (Fundulus heteroclitus) after exposure to 17α-ethynylestradiol in a short-term reproductive bioassay. Aquatic Toxicology 85, 154-166.
Pojana, G., Gomiero, A., Jonkers, N., Marcomini, A., 2007. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environment International 33, 929-936.
Poulson, T.L., Platt, W.J., 1996. Replacement patterns of beech and sugar maple in Warren Woods, Michigan. Ecology 77, 1234-1253.
Praveena, S.M., Lui, T.S., Hamin, N.A., Razak, S.Q.N.A., Aris, A.Z., 2016. Occurrence of selected estrogenic compounds and estrogenic activity in surface water and sediment of Langat River (Malaysia). Environmental Monitoring and Assessment 188, 442.
Qvarnström, A., Forsgren, E., 1998. Should females prefer dominant males? Trends in Ecology & Evolution 13, 498-501.
Rantala, M.J., Kortet, R., 2004. Male dominance and immunocompetence in a field cricket. Behavioral Ecology 15, 187-191.
Royle, N.J., Lindström, J., Metcalfe, N.B., 2005. A poor start in life negatively affects dominance status in adulthood independent of body size in green swordtails Xiphophorus helleri. Proceedings of the Royal Society B: Biological Sciences 272, 1917-1922.
Rubenstein, D.I., 1981. Individual variation and competition in the everglades pygmy sunfish. Animal Ecology 50, 337-350.
Saaristo, M., Craft, J.A., Lehtonen, K.K., Björk, H., Lindström, K., 2009a. Disruption of sexual selection in sand gobies (Pomatoschistus minutus) by 17α-ethinyl estradiol, an endocrine disruptor. Hormones and Behavior 55, 530-537.
Saaristo, M., Craft, J.A., Lehtonen, K.K., Lindström, K., 2009b. Sand goby (Pomatoschistus minutus) males exposed to an endocrine disrupting chemical fail in nest and mate competition. Hormones and Behavior 56, 315-321.
Saaristo, M., Craft, J.A., Lehtonen, K.K., Lindström, K., 2010. Exposure to 17α-ethinyl estradiol impairs courtship and aggressive behaviour of male sand gobies (Pomatoschistus minutus). Chemosphere 79, 541-546.
Scott, G.R., Sloman, K.A., 2004. The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquatic Toxicology 68, 369-392.
Sopinka, N.M., Marentette, J.R., Balshine, S., 2010. Impact of contaminant exposure on resource contests in an invasive fish. Behavioral Ecology and Sociobiology 64, 1947-1958.
Sumpter, J.P., Jobling, S., 1995. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environmental Health Perspectives 103, 173-178.
Tubert, C., Lo Nostro, F., Villafañe, V., Pandolfi, M., 2012. Aggressive behavior and reproductive physiology in females of the social cichlid fish Cichlasoma dimerus. Physiology & Behavior 106, 193-200.
Volkova, K., Reyhanian Caspillo, N., Porseryd, T., Hallgren, S., Dinnétz, P., Porsch-Hällström, I., 2015a. Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny. Hormones and Behavior 73, 30-38.
Volkova, K., Reyhanian Caspillo, N., Porseryd, T., Hallgren, S., Dinnetz, P., Olsén, H., Porsch Hällström, I., 2015b. Transgenerational effects of 17α-ethinyl estradiol on anxiety behavior in the guppy, Poecilia reticulata. General and Comparative Endocrinology 223, 66-72.
Volkova, K., Reyhanian, N., Kot-Wasik, A., Olsén, H., Porsch-Hällström, I., Hallgren, S., 2012. Brain circuit imprints of developmental 17α-Ethinylestradiol exposure in guppies (Poecilia reticulata): Persistent effects on anxiety but not on reproductive behaviour. General and Comparative Endocrinology 178, 282-290.
Wong, M., Uppaluri, C., Medina, A., Seymour, J., Buston, P., 2016. The four elements of within-group conflict in animal societies: an experimental test using the clown anemonefish, Amphiprion percula. Behavioral Ecology and Sociobiology 70, 1467-1475.
Wong, M.Y.L., Medina, A., Uppaluri, C., Arnold, S., Seymour, J.R., Buston, P.M., 2013. Consistent behavioural traits and behavioural syndromes in pairs of the false clown anemonefish Amphiprion ocellaris. Journal of Fish Biology 83, 207-213.
Wu, Y., Zhou, X., Lian, Z., Wang, J., Tan, L., Zhao, Z., 2011. 2011 3rd international conference on environmental science and information application technology ESIAT 2011 distribution of estrogens along Licun River in Qingdao, China. Procedia Environmental Sciences 10, 1876-1880.
Yan, Z., Lu, G., Liu, J., Jin, S., 2012. An integrated assessment of estrogenic contamination and feminization risk in fish in Taihu Lake, China. Ecotoxicology and Environmental Safety 84, 334-340.
Ying, G.-G., Kookana, R.S., Kumar, A., Mortimer, M., 2009. Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland. Science of The Total Environment 407, 5147-5155.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *