帳號:guest(3.144.41.229)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:曾衡宇
作者(英文):Heng-Yu Tseng
論文名稱:三丁基錫對倒立水母Cassiopea andromeda生理之影響
論文名稱(英文):Physiological responses of the jellyfish Cassiopea andromeda exposed to tributyltin
指導教授:孟培傑
指導教授(英文):Pei-Jie Meng
口試委員:王志騰
張桂祥
口試委員(英文):Jih-Terng Wang
Kwee-Siong Tew
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610463104
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:74
關鍵詞:三丁基錫倒立水母傘部收縮頻率最高光效率有效螢光量
關鍵詞(英文):tributyltinCassiopea andromedabell pulsation ratemaximum quantum yieldeffective quantum yield
相關次數:
  • 推薦推薦:0
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏收藏:0
本研究以TBT為模擬毒性物質,探討倒立水母(Cassiopea andromeda) 短期暴露於模擬海洋環境之TBT濃度以及回復後,其生長率、傘部收縮頻率、共生藻光系統二(Photosystem Ⅱ, PSⅡ)光合作用活性、共生藻密度以及葉綠a濃度等生理參數之變化。本實驗將濕重與傘部直徑相似之倒立水母隨機分配,分別暴露於不同濃度之TBT溶液中7天,實驗分為控制組、低濃度組、中濃度組以及高濃度組,之後再移入乾淨之海水中培養7天。實驗結果顯示,暴露實驗開始前,各處理組之濕重、傘部直徑、傘部收縮頻率以及共生藻PSⅡ最高光效率均與控制組相似。暴露7天後,各處理組與控制組之間濕重、傘部直徑、口腕濕重比例、共生藻PSⅡ有效螢光量、共生藻密度以及葉綠素a濃度沒有顯著差異,反之,各組別之濕重以及傘部直徑均呈現負成長。此外,低濃度、中濃度及高濃度各組中,濕重、最高光效率及有效螢光量顯著降低的趨勢,口腕與傘部組織之間以濕重標準化之共生藻密度沒有顯著差異。然而,中濃度及高濃度組之傘部收縮頻率顯著低於控制組,且高濃度組之傘徑有下降的情況。回復7天後,在低濃度、中濃度及高濃度各組,以濕重標準化之傘部共生藻密度均低於口腕共生藻密度,且共生藻PSⅡ最高光效率低於實驗前初始值。而中濃度組,以傘部表面積標準化之傘部共生藻密度有下降之趨勢。最後,高濃度組,以濕重標準化之傘部共生藻密度則有下降現象。最後,本研究結果顯示倒立水母可以作為面對有機錫汙染物之早期預警指標生物。
In this study, we characterized the toxic effects of tributyltin on a symbiotic jellyfish Cassiopea andromeda with several physiological parameters, including growth rate, bell pulsation rate, symbiont PSⅡ activity (maximum quantum yield and effective quantum yield), zooxanthellae density and chlorophyll-a concentrations. Before the experiment, similar size of jellyfishes were selected, in which wet weight, bell diameter, proportion of oral arm wet weight, bell pulsation rate, PSⅡ maximum quantum yield, zooxanthellae density and chlorophyll-a concentrations were no significant differences in all groups. At 7 days of exposure, no significant differences in wet weight, bell diameter, proportion of oral arm wet weight, PSⅡ effective quantum yield, zooxanthellae density (in the whole body or between oral arm and bell tissue) and chlorophyll-a concentrations were found between treatments. When compared with the day 0, wet weight, PSⅡ maximum quantum yield and PSⅡ effective quantum yield reduced in all treatments. Negative growth were found in all treatments. Besides that, bell pulsation rates were lower in medium and high concentrations groups. Finally, TBT caused significant decreases in bell diameter in high concentrations groups. At 7 day of recovery, zooxanthellae density in bell tissue was significant lower than oral arm and PSⅡ maximum quantum yield were significant decreases in all treatment concentrations. Moreover, bell zooxanthellae density were significant decreases in high concentrations groups. Conclusively, we believe that jellyfish Cassiopea andromeda is sensitive to organotin pollutant exposure and can be used as an early warning indicator species.
一、 前言 1
1.1. 有機錫化學特性 1
1.2. 有機錫用途 1
1.3. 國外有機錫監測 2
1.4. 台灣有機錫監測 2
1.5. 有機錫毒性 3
1.6. 生物累積與代謝 5
1.7. 倒立水母 6
1.8. 生理特性 7
1.9. 研究目的 9
二、 材料與方法 11
2.1. 化學藥劑配製 11
2.2. 實驗動物 11
2.3. 實驗設計 11
2.4. 光合作用效率測量 12
2.5. 共生藻密度測量 13
2.6. 葉綠素a濃度測量 13
2.7. 統計分析 14
三、 結果 15
3.1. 生長率 15
3.2. 傘部收縮頻率 16
3.3. PSⅡ之光合作用效率 17
3.4. 共生藻密度 18
3.4.1. 以傘部表面積標準化 18
3.4.2. 以濕重標準化 20
3.5. 葉綠素a濃度 21
3.5.1. 以濕重標準化 21
3.5.2. 以共生藻密度標準化 21
3.5.3. 以傘部表面積標準化 21
四、 討論 23
4.1. 生長率 23
4.2. 傘部收縮頻率 24
4.3. PSⅡ之光合作用效率 24
4.4. 共生藻密度 26
4.5. 葉綠素a濃度 27
五、 結論 29
六、 參考文獻 31
李珮怡,2015。高雄地區港口有機錫化合物分布之研究,國立中山大學海洋生物科技暨資源研究所碩士論文。
李淑惠,2002。墾丁海域有機錫之研究,國立中山大學海洋生物科技暨資源研究所碩士論文。
林以淇,2013。高雄地區港口有機錫化合物分佈之研究,國立中山大學海洋生物科技暨資源研究所碩士論文。
林衍孜,2005。臺灣高屏地區港口底質中有機錫化合物分布之研究,國立中山大學海洋生物科技暨資源研究所碩士論文。
唐川禾,2007。鹿耳門溪及四草漁港環境及生物體中有機錫之研究,國立中山大學海洋生物科技暨資源研究所博士論文。
張永昌。2013。高屏溪下游地區沉積物中重金屬汙染評估,輔英科技大學環境工程與科學研究所碩士論文。
潘建璋,2015。高屏溪流域有機錫化合物分布之研究,國立中山大學海洋生物科技暨資源研究所碩士論文。
Abrego, D., Ulstrup, K. E., Willis, B. L., and van Oppen, M. J. H. 2008. Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc. R. Soc. B 275, 2273–2282.
Allemand, D., Tambutte, E., Girard, J. P., and Jaubert, J. 1998. Organic matrix synthesis in the Scleractinian coral, Stylophora pistillata: Role in biomineralization and potential target of the organotin TBT. J. Exp. Biol 201, 2001-2009.
Al-Rousan, S., Rasheed, M., and Badran, M. 2004. Nutrient diffusive fluxes from sediments in the northern Gulf of Aqaba, Red Sea. Sci Mar 68, 483–490.
Alzieu, C., Sanjuan, J., Deltreil, J. P., and Borel, M. 1986. Tin contamination in Arcachon Bay: Effects on oyster shell anomalies. Mar Pollut Bull 17, 494–8.
Alzieu, C., Héral, M., Thibau, D. Y., Dardignac, M. J., and Feuillet, M. 1982. Influence des peintures antisalissures à base d’organostanniques sur la calcification de la coquille de l’huitre Crassostrea gigas. Rev. Trav. Inst. Pêches marit 45, 101–116.
Alzieu, C. L., Thibaud, Y., Héral, M., and Boutier, B. 1980. Évaluation des risques dus à l’emploi des peintures antisalissures dans les zones conchycoles. Rev. Trav. Inst. Pêches marit 44, 301–348.
Alzieu, C. 1991. Environmental problems caused by TBT in France: assessment, regulations, prospects. Mar. Environ. Res 32, 7–17.
Anthony, K., and Fabricius, K. E. 2000. Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J. Exp. Mar. Biol. Ecol 252, 221-253.
Arai, M. N. 1997. A functional biology of Scyphozoa. Chapman & Hall, London, UK, 316.
Arif, C., Daniels, C., Bayer, T., Banguera-Hinestroza, E., Barbrook, A., Howe, C. J., LaJeunesse, T. C., and Voolstra, C. R. 2014. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol Ecol 23, 4418–4433.
Arkoosh, M. R., Casillas, E., Clemons, E., Kagley, A. N., Olson, R., Reno, P., and Stein, J. E. 1998. Effect of pollution on fish diseases: potential impacts on salmonid populations. J Aquat Anim Health 10, 182–190.
Banaszak, A. T., and Trench, R. K. 1995. Effects of ultraviolet (UV) radiation on marine microalgal-invertebrate symbioses. II. The synthesis of mycosporine-like amino acids in response to exposure to UV in Anthopleura elegantissima and Cassiopea xamachana. J Exp Mar Biol Ecol 194, 233–250.
Barshis, D. J., Stillman, J. H., Gates, R. D., Toonen, R. J., Smith, L. W., and Birkeland, C. 2010. Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Mol. Ecol 19, 1705–1720.
Batista, R. M., Castro, I. B., and Fillmann, G. 2016. Imposex and butyltin contamination still evident in Chile after TBT global ban. Sci Total Environ 566–567, 446–453.
Beaumont, A. L., and Budd, M. D. 1984. High mortality of the larvae of the common mussel at low concentrations of tributyltin. Mar. Pollut. Bull 15, 402–405.
Beaumont, A. R., and Newman, M. D. 1986. Low levels of tributyltin reduce growth of marine microalgae. Mar. Poll. Bull 17, 457-461.
Benson, A. A. 1990. Arsenic depuration via the Tridacna gill membrane. Z Naturf 45c, 793-796.
Bigelow, R. P. 1900. The anatomy and development of Cassiopea xamachana. Boston Soc Nat Hist Mem 5, 191–236.
Blanquet, R. S., and Phelan, M. A. 1987. An unusual blue mesogleal protein from the mangrove jellyfish Cassiopea xamachana. Mar Biol 94, 423–430.
Blunden, S. J., Hobbs, L. A., and Smith, P. J. 1984. Then environmental chemistry of organotin compounds. In: Bowen HJM, editor. Environmental chemistry. The Royal Society of Chemistry, London, UK, 49-77.
Brown, B. E. 1997. Coral bleaching: causes and consequences. Coral Reefs 16, 129–138.
Brown, B. A., Downs, C. A., Dunne, R. P., and Gibb, S. W. 2002. Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar. Ecol., Prog. Ser 242, 119–129.
Bryan, G. W., Gibbs, P. E., and Hummerstone, L. G., Burt, G. R. 1986. The decline of the gastropod Nucella lapillus around southwest England: evidence for the effect of tributyltin from antifouling paints. J. Mar. Biol Assoc. U.K 66, 611.
Cantin, N. E., Negri, A. P., and Willis, B. L. 2007. Photoinhibition from chronic herbicide exposure reduces reproductive output of reef-building corals. Mar. Ecol. Prog. Ser 344, 81-93.
Caricchia, A. M., Chiavarini, S., Cremisini, C., Morabito, R., and Scerbo, R. 1994. Influence of storage conditions on the determination of organotin in mussels. Anal. Chim. Acta 286, 329-34.
Caseri, W. 2014. Initial Organotin Chemistry [J]. J Organnomet Chem 751, 20-24.
Chen, C. W., Chen, C. F., Ju, Y. R., and Dong, C. D., 2016. Assessment of the bioaccumulation and biodegradation of butyltin compounds by Thalamita crenata in Kaohsiung Harbor. Taiwan. Int. Biodeterior. Biodegr 113, 97-104.
Cocchieri, R. A., Biondi, A., Arnese, A., and Pannaccione, A. 1993. Total tin and organotin in seawater from the Gulf of Naples, Italy. Mar. Pollut. Bull 26, 338–341.
Császár, N. B. M., Seneca, F. O., and van Oppen, M. J. H. 2009. Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Mar Ecol Prog Ser 392, 93–102.
Den Besten, P. J., Herwig, H. J., van Donselaar, E. G., and Livingstone, D. R. 1990. Cytochrome P-450 system and benzo(a)pyrene metabolism in echinoderms. Mar. Biol 107, 171–177.
Dong, C. D., Chen, C. F., and Chen, C. W. 2015. Composition and source of butyltins in sediments of Kaohsiung Harbor. Taiwan. Coast. Shelf Sci 156, 134-143.
Downs, C. A., Fauth, J. E., Halas, J. C., Dustan, P., Bemiss, J., Woodley, C. M. 2002. Oxidative stress and seasonal coral bleaching. Free Radic. Biol. Med 33, 533–543.
Downs, C. A., McDougall, K. E., Woodley, C. M., Fauth, J. E., Richmond, R. H., Kushmaro, A., Gibb, S. W., Loya, Y., Ostrander, G. K., and Kramarsky-Winter, E. 2013. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS One 8, e77173.
Dowson, P. H., Bubb, J. M., and Lester, J. N. 1992. Organotin distribution in sediments and waters of selected east coast estuaries in the UK. Mar. Pollut. Bull 24, 492–498.
Dowson, P. H., Bubb, J. M., and Lester, J. N. 1994. The effectiveness of the 1987 retail ban on TBT-based antifouling paints in reducing butyltin concentrations in East Anglia, U.K. Chemosphere 28, 905–910.
Drew, E. A. 1972. The biology and physiology of alga-invertebrates symbioses. II. The
density of symbiotic algal cells in a number of hermatypic hard corals and alcyonarians from various depths. J. Exp. Mar. Biol. Ecol 9, 71-75.
Dustan, P. 1999. Coral reefs under stress: sources of mortality in the Florida Keys. Nat Res Forum 23, 147–155.
Epstein, H. E., Templeman, M. A., and Kingsford, M. J. 2016. Fine-scale detection of pollutants by a benthic marine jellyfish. Mar. Pollut. Bull 107, 340-346.
Espourteille, F. A., Greaves, J., and Huggett, R. J. 1993. Measurement of tributyltin contamination of sediment and Crassostrea virginica in the southern Chesapeake Bay. Environ. Toxicol. Chem 12, 305–314.
Estes, A. M., Kempf, S. C., and Henry, R. P. 2003. Localization and Quantification of Carbonic Anhydrase Activity in the Symbiotic Scyphozoan Cassiopea xamachana. Biological Bulletin 204, 278-289.
Evans, D. W., and Laughlin, R. B. 1984. Accumulation of bis (tributy1tin) oxide by the mud crab Rhithropanopeus harrlsii Chemosphere 13, 213-219.
Exton, D. A., McGenity, T. J., Steinke, M., Smith, D. J., and Suggett, D. J. 2015. Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world. Glob Change Biol 21, 1383–1394.
Fent, K. 1996. Ecotoxicology of organotin compounds. Crit Rev Toxicol 26, 1–117.
Flrman, J., and Gassman, N. 1995. Enzyme induction, and partitioning, metabolism and depuration of chlordane in a scleractinlan coral. 2nd SETAC World Congress (Abtracts) Soc Environ Toxicol Chem, SETAC Press, Pensacola, 27.
Fish, R. H., Kimmell, E. C., and Casida, J. E. 1976. Bioorganotin chemistry: reactions of tributyltin derivatives with cytochrome P-450 dependent monooxygenase enzyme system. J Organomet Chem 118, 41-54.
Fitt, W. K., Gates, R. D., Hoegh-Guldberg, O., Bythell, J..C., Jatkar, A., Grottoli, A..G., Gomez, M., Fisher, P., LaJeunesse, T. C., Pantos, O., Iglesias-Prieto, R., Franklin, D..J., Rodrigues, L..J., Torregiani, J. M., van Woesik, R., and Lesser, M. P. 2009. Response of two species of IndoPacific corals, Porites cylindrical and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J. Exp. Mar. Biol. Ecol 373, 102–110.
Fransolet, D., Roberty, S., and Plumier, J. C. 2014. Impairment of symbiont photosynthesis increases host cell proliferation in the epidermis of the sea anemone. Aiptasia pallida. Mar. Biol, 1-9.
Gassman, N. J., and Kennedy, C. J. 1992. Cytochrome P-450 content and xenobiotic metabolizing enzyme activities in the scleractinian coral, Favia fragum (Esper). Bull. Mar. Sci 50, 320–330.
Genty, B., Briantais, J. M., Baker, N. R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, Gen. Subj 990 (1), 87–92.
Gibbs, P. E., Pascoe, P. L., and Burt, G. R. 1988. Sex change in the female dog-whelk, Nucella lapillus, induced by tributyltin from antifouling paints. J. Mar. Biol. Assoc. U.K 68, 715–731.
Girard, J. P., Ferrua, C. and Pesando, D. 1997. Effect of tributyltin on Ca2+ homeostasis and mechanisms controlling cell cycling in sea urchin eggs. Aquat. Toxicol 38, 225–239.
Gladfelter, W. B. 1972. Structure and function of the locomotory system of the Seyphomedusa Cyanea capillata. Mar Biol 14, 150–160.
Glider, W. V., Phipps, D. W., and Pardy, R. L. 1980. Localization of symbiotic dinoflagellate cells with tentacle tissue of Aiptasia pallida (Coelenterata, An- thozoa). Trans. Am. Micros. Soc 90, 426-38.
Gohar, H. A. F., and Eisawy, A. M. 1960. The biology of the Cassiopea andromeda. Publ Mar Biol Stn Al-Ghardaqa 11, 148–190.
Goyen, S., Pernice, M., Szabó, M., Warner, M. E., Ralph, P. J., and Suggett, D. J. 2017. A molecular physiology basis for functional diversity of hydrogen peroxide production amongst Symbiodinium spp. (Dinophyceae). Mar. Biol 164, 46.
Grigg, R. V., and Dollar, S. J. 1991. Natural and anthropogenic disturbance on coral reefs. In: Dubinsky Z (ed) Ecosystems of the world no. 25 coral reefs Elsevier Science Publishers, Amsterdam, 439-452.
Grottoli, A. G., Rodrigues, L. J., and Palardy, J. E. 2006. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186-1189.
Grottoli, A. G., Warner, M. E., Levas, S. J., Aschaffenburg, M. D., Schoepf, V., McGinley, M., Baumann, J., and Matsui, Y. 2014.The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol 20, 3823–3833.
Huang, Guolan., and Wang, Yong. 1995. Effects of tributyltin chloride on marine bivalve mussels. Water Res 29, 1877-1884.
Harland, A. D., Bryan, G. W., Brown, B. E. 1990. Zinc and cadmium absorption in the symbiotic anemone Anemonia viridis and the non-symbiotic anemone Actinia equina. J Mar Biol Ass UK 70, 789-802.
Harland, A. D., and Nganro, N. R. 1990. Copper uptake by the sea anemone Anemonia viridis and the role of zooxanthellae in metal regulation. Mar Blol 104, 297-301.
Héral, M., Berthomme, J. P., Polancotorres, E., Alzieu, C., Deslous-Paoli, J. M., Razet, D. and Garnier, J. 1981. Anomalie de croissance de la coquille de Crassostrea gigasdans le bassin de Marennes-Oléron. Bilan de trois années d’observations. C.I.E.M. CM/K31, 1–16.
Higashiyama, T., Shiraishi, H., Otsuki, A., and Hashimoto, S. 1991. Concentrations of organotin compounds in blue mussels from the wharves of Tokyo Bay. Mar. Pollut. Bull.22, 585–587.
His, E., and Robert, R. 1983. Developpement des veligeres de Crassostrea gigas dans le bassin d'Arcachon. Etudes sur les mortalites larvaires, Revue des Travaux de l'Institut des Pêches Maritimes, 47, 63-88.
Hoch, M. 2001. Organotin compounds in the environment: an overview. Appl Geochem, 16, 719–43.
Hoegh-Guldberg, O. 1999. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50, 839–866.
Holguin, G., Vazquez, P., and Bashan, Y. 2001. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33, 265–278.
Hoogenboom, M., Rodolfo-Metalpa, R., and Ferrier-Pag es, C. 2010. Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J. Exp. Biol 213, 2399-2409.
Huettel, M., Roy, H., Precht, E., and Ehrenhauss, S. 2003. Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia 494, 231–236.
Hughes, T. P. 1994. Catastrophes, phase shifts, and large scale degradation of a Caribbean coral reef. Science 265, 1547–1551.
Jones, A., and Berkelmans, R. 2010. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS ONE 5, e10437.
Jones, R. J. 1997. Zooxanthellae loss as a bioassay for assessing stress in corals. Mar Ecol Prog Ser 149, 163–171.
Jones, R. J., Kildea, T., and Hoegh-Guldberg, O. 1999. PAM chlorophyll fluorometry: a new in situ technique for stress assessment in scleractinian corals, used to examine the effects of cyanide from cyanide fishing. Mar Pollut Bull 38, 864–874.
Jones, R. J., Ward, S., Amri, A. Y., and Hoegh-Guldberg, O. 2000. Changes in quantum efficiency of photosystem II of symbiotic dinoflagellates of corals after heat stress, and of bleached corals sampled after the 1998 Great Barrier Reef mass bleaching event. Mar Freshw Res 51, 63–71.
Jones, R. J., and Kerswell, A. P. 2003. Phytotoxicity of Photosystem II (PSII) herbicides to coral. Mar. Ecol. Prog. Ser 261, 149-159.
Kao, S. J., and Milliman, J. D. 2008. Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. J. Geol 116, 431–448.
Kenkel, C. D., Goodbody-Gringley, G., Caillaud, D., Davies, S. W., Bartels, E., Matz, M. V. 2013. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Molecular Ecology 22, 4335–4348.
Kime, D. E. 1995. The effects of pollution on reproduction in fish. Rev Fish Biol Fisheries 5, 52–96.
Klein, S. G., Pitt, K. A., and Carroll, A. R. 2016. Reduced salinity increases susceptibility of zooxanthellate jellyfish to herbicide toxicity during a simulated rainfall event. Environ. Pollut 209, 79-86.
Krampitz, G., Drolshagen, H. and Deltreil, J. P. 1983. Soluble matrix components in malformed oyster shells. Experientia 39, 1105–1106.
Kremer, P., Costello, J., Kremer. J., and Canino, M. 1990. Significance of photosynthetic endosymbionts to the carbon budget of the scytomedusa Linuche unguiculazu. Limnol. Oceanogr 35, 609–624.
Krueger, T., Becker, S., Pontasch, S., Dove, S., Hoegh-Guldberg, O., Leggat, W., Fisher, P. L., and Davy, S. K. 2014. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J Phycol 50, 1035–1047.
Krueger, T., Hawkins, T. D., Becker, S., Pontasch, S., Dove, S., HoeghGuldberg, O., Leggat, W., Fisher, P. L., Davy, S. K. 2015. Differential coral bleaching—contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp Biochem Physiol A Mol Integr Physiol 190, 15–25.
LaJeunesse, T. C. 2001. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the internal transcribed spacer region: in search of a “species” level marker. Journal of Phycology 37, 866–880.
LaJeunesse, T. C., Parkinson, J. E., and Reimer, J. D. 2012. A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol 48, 1380–1391.
Lampert, K. P., Burger, P., Striewski, S., and Tollrian, R. 2011. Lack of association between color morphs of the jellyfish Cassiopea andromeda and zooxanthella clade. Mar. Ecol, 1–6.
Larson, R. J. 1997. Feeding behaviour of Caribbean Scyphomedusae: Cassiopea frondosa (Pallas) and Cassiopea xamachana (Bigelow). Publ Found Sci Res Caribb Reg 139, 43–54.
Lee, R. F. 1991. Metabolism of tributyltin by marine animals and possible linkages to effects. Mar. Environ. Res 32, 29–35.
Lee, R. F., Valkirs, A. O., and Seligman, P. F. 1989. Importance of microalage in the biodegradation of tributyltin in estuarine waters. Environ. Sci. Technol 23, 1515–1518.
Lee, S. Y., Jeong, H. J., Kang, N. S., Jang, T. Y., Jang, S. H., and LaJeunesse, T. C. 2015. Symbiodinium tridacnidorum sp. nov., a dinoflagellate common to Indo-Pacific giant clams, and a revised morphological description of Symbiodinium microadriaticum Freudenthal, emended Trench & Blank. European Journal of Phycology. 50, 155–172.
Leitz, T. 1997. Induction of settlement and metamorphosis of Cnidarian larvae: signals and signal transduction. Invert Reprod Dev. 31, 109–122.
Lesser, M. P. 1996. Exposure of symbiotic dinoflagellates to elevated temperatures and ultraviolet radiation causes oxidative stress and inhibits photosynthesis. Limnol Oceanogr. 41, 271—283.
Lesser, M. P. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol. 68, 253–278.
Lesser, M. P. 2011. Coral bleaching: causes and mechanisms. In: Dubinksy, Z., Stambler, N. (Eds.), Coral Reefs: An Ecosystem in Transition. Springer, Heidelberg, Germany, 405–419.
Loya, Y., Sakai, K., Yamazato, K., Nakano, Y., Sambali, H., and van Woesik, R. 2001. Coral bleaching, the winners and the losers. Ecology Letters. 4, 122–131.
Magnusson, M., Heimann, K., and Negri, A. P. 2008. Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Mar. Pollut. Bull 56, 1545-1552.
Maguire, R. J., Carey, J. H., and Hale, E. J. 1983. Degradation of the tri-n-butyltin species in water. J. Agric. Food Chem 31, 1060-1065.
Maguire, R. J., Wony, P. T. S., and Rhamey, J. S. 1984. Accumulation and metabolism of tri-n-butyltin cation by a green algae. Ankistrodesrnus falcatus. Can J Fish Aquat Sci 41, 537-540.
McCloskey, L. R., Muscatine, L., and Wilkerson, F. P. 1994. Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.). Mar. Biol 119, 13–22.
Mellas, R. E., McIlroy, S. E., Fitt, W. K., and Coffroth, M. A. 2014. Variation in symbiont uptake in the early ontogeny of the upside-down jellyfish, Cassiopea spp. J Exp Mar Biol Ecol 459, 38–44.
Meng, P. J., Lin, J., and Liu, L. L. 2009. Aquatic organotin pollution in Taiwan. J Environ Manage 90, S8 –S15.
Mercier, A., Pelletier, E., and Hamel, J. F. 1994. Metabolism and subtle toxic effects of butyltin compounds in starfish Aquat Tox~col 28, 259-273.
Mercier, A., Pelletier, É., and Hamel, J. F. 1996. Toxicological response of the symbiotic sea anemone Aiptasia pallida to butyltin contamination. Mar. Ecol. Prog. Ser 144, 133–146.
Mercier, A., Pelletier, É., and Hamel, J. F. 1997. Effects of butyltins on the symbiotic sea anemone Aiptasia pallida (Verrill). J. Exp. Mar. Biol. Ecol 255, 289–304.
Mercier, A., Pelletier, E., and Hamel, J. F. 1998. Response of temperate sea anemones to butyltin contamination. Canadian Journal of Fish and Aquatic Science 55(1), 239-245.
Minchin, D., Oehlmann, J., Duggan, C. B., Stroben, E., and Keatinge, M. 1995. Marine TBT antifouling contamination in Ireland, following legislation in 1987. Mar. Pollut. Bull 30, 633–639.
Moreira, S. M., Coimbra, J., and Guilhermino, L. 2001. Acetylcholinesterase of Mytilus galloprovincialis LmK. hemolymph: a suitable environmental biomarker. Bull Environ Contam Toxicol 67, 470–475.
Negri, A. P., and Heyward, A. J. 2001. Inhibition of coral fertilisation and larval metamorphosis by tributyltin and copper. Marine Environmental Research 51, 17–27.
Negri, A. P., Smith, L. D., Webster, N. S., and Heyward, A. J. 2002. Understanding shipgrounding impacts on a coral reef: potential effects of anti-foulant paint contamination on coral recruitment. Mar. Pollut. Bull 44, 111–117.
Oberdörster, E., Rittschof, D., and McClellan-Green, P. 1998. Induction of cytochrome P450 3A and heat shock protein by tributyltin in blue crab, Callinectes sapidus. Aquat. Toxicol 41, 83-100.
Oehlmann, J., and Bettin, C. 1996. Tributyltin-induced imposex and the role of steroids in marine snails. Malacol Rev Suppl 6, 157–161.
Owen, R., Knap, A., Ostrander, N., and Carbery, K. 2003. Comparative acute toxicity of herbicides to photosynthesis of coral zooxanthellae. Bull. Environ. Contam. Toxicol 70, 0541-0548.
Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. G., McArdle, D., McClenachan, L., Newman, J. H., Paredas, G., Warner, R. R., and Jackson, J. B. C. 2003. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955-958.
Parker, S. P., Bowden, W. B., and Flinn, M. B. 2016. The effect of acid strength and postacidification reaction time on the determination of chlorophyll a in ethanol extracts of aquatic periphyton. Limnology and Oceanography: Methods 14, 839–852.
Parkinson, J. E., and Baums, I. B. 2014. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral algal associations. Front Microbiol 5, 445.
Paxton, C. W., Davy, S. K., and Weis, V. M., 2013. Stress and death of cnidarian host cells play a role in cnidarian bleaching. J. Exp. Biol 216, 2813–2820.
Paz-Villarraga, C. A., Castro, I. B., Miloslavich, P., and Fillmann, G. 2015. Venezuelan Caribbean Sea under the threat of TBT. Chemosphere 119, 704–710.
Peters, E. C., Meyers, P. A., Yevich, P. P., and Blake, N. J. 1981. Bioaccumulation and histopathological effects of oil on a stony coral. Mar Pollut Bull 12, 333-339.
Philipp, E., and Fabricius, K. 2003. Photophysiological stress in scleractinian corals in response to short-term sedimentation. Journal of Experimental Marine Biology and Ecology 287, 57–78.
Pochon, X., and Gates, R. D. 2010. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56, 492–497.
Pochon, X., Putnam, H. M., and Gates, R. D. 2014. Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. PeerJ 2, e394.
Powers, M. F., and Beavis, A. D. 1991. Triorganotins inhibit the mitochondrial inner membrane anion channel. J. Biol. Chem 266, 17250 – 17256.
Precht, E., and Huettel, M. 2003. Advective pore-water exchange driven by surface gravity waves and its ecological implications. Limnol Oceanogr 48, 1674–1684.
Ralph, P. J., Gademann, R., Larkum, A. W. D., and Schreiber, U. 1999. In situ underwater measurements of photosynthetic activity of coral zooxanthellae and other reef-dwelling dinoflagellate endosymbionts. Mar. Ecol. Prog. Ser 180, 139 – 147.
Ralph, P. J., Gademann, R., and Larkum, A. W. D. 2001. Zooxanthellae expelled from bleached corals at 33 °C are photosynthetically competent. Mar. Ecol. Prog. Ser 220, 163–168.
Reader, S., Marion, M. and denizeau, F. 1993. Flow cytometric analysis of the effects of tri-n-butyltin chloride on cytosolic free calcium and thiol levels in isolated rainbow trout hepatocytes. Toxicol 89, 117–129.
Regoli, F., Gorbi, S., Frenzilli, G., Nigro, M., Corsi, I., Focardi, S., Winston, G.W. 2002. Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Mar. Environ. Res 54, 419–423.
Rice, S. D., Short, J. W., and Stickle, W. B. 1989. Uptake and catabolism of butyltin by blue crab fed TBT contaminated prey. Mar Environ Res 27, 137-145.
Ritsema, R. 1994. Dissolved butyltins in marine waters of the Netherlands three years after the ban. Appl. Organomet. Chem 8, 5–10.
Roberts, M. H. Jr. 1987. Acute toxicity of tributyltin chloride to embryos and larvae of two bivalve mollusks, Crassostrea virginica and Mercenaria mercenaria. Bull. Environ. Contam. Toxicol 39, 1012–1019.
Roberty, S., Fransolet, D., Cardol, P., Plumier, J. C., and Franck, F. 2015. Imbalance between oxygen photoreduction and antioxidant capacities in Symbiodinium cells exposed to combined heat and high light stress. Coral Reefs 34, 1063–1073.
Rodriguez, C. R., and Andlopez, F. C. 1983. Formation de chambres dans la coquille de l’huître plate Ostrea edulisL. cultivée dans les rias de Galice. Rev. Trav. Inst Pêches marit 47, 89–98.
Rogers, C. S. 1990. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser 62, 185 – 202.
Rouleau, C., Gobeil, C., and Tjalve, H. 1999. Pharmacokinetics and distribution of dietary tributyltin and methylmercury in the snow crab (Chionoecetes opilio). Environ. Sci. Technol 33, 3451-3457.
Rowen, D. J., Templeman, M. A., and Kingsford, M. J. 2017. Herbicide effects on the growth and photosynthetic efficiency of Cassiopea maremetens. Chemosphere 182, 143 –148.
Saxby, T., Dennison, W. C., and Hoegh-Guldberg, O. 2003. Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Marine Ecology Progress Series 248, 85–97.
Saint-Louis, R., Pelletier, C., Marsot, P., Fournier, R. 1994. Distribution and effects of tributylt~n chloride and its degradation products on the growth of the marine alga Pavlova lutheri in continuous culture. Wat Res 28, 2533-2544.
Seligman, P. F., Valkirs, A. O., Stan, P. M., and Lee, R. F. 1988. Evidence of rapid degradation of tributyltin in a marina. Mar. Pollut. Bull 19, 531–534.
Shick, J. M. 1991. A functional biology of sea anemones. Chapman and Hall, London, U.K.
Smith, L. D., Negri, A. P., Phillip, E., Webster, N. S., and Heyward, A. J. 2003. The effects of antifoulant paint contaminated sediments on coral recruits and branchlets. Mar Biol 143, 651–657.
Stewart, C., and de Mora, S. J. 1990. A review of the degradation of tri(n-butyl)tin in the marine environment. Environ. Technol 11, 565–570.
Stewart, C., and de Mora, S. J. 1992. Elevated tri(n-butyl)tin concentrations in shellfish and sediments from Suva Harbour, Fiji. Appl. Organomet. Chem 6, 507–512.
Stewart, C., and Thompson, J. A. J. 1994. Extensive butyltin contamination in southwestern coastal British Columbia, Canada. Mar. Pollut. Bull 28, 601–606.
Stimson, J., Sakai, K., and Sembali, H. 2002. Interspecific comparison of symbiotic relationship in corals with high and low rates of bleaching-induced mortality. Coral Reefs 21, 409–421.
Tang, C. H. 2007. Organotin accumulation status of organisms and environments in Luermen Stream and Sih-Cao Fishing Port. Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Master Thesis, 227 pp.
Templeman, M. A., and Kingsford, M. J. 2010. Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia. Marine Environmental Research 69, 63-72.
Templeman, M. A. and Kingsford, M. J. 2015. Predicting aqueous copper and zinc accumulation in the upside-down jellyfish Cassiopea maremetens through the use of biokinetic models. Environ. Monit. Assess 187, 416-424.
Thompson, J. A., Sheffer, M. G., Pierce, R. C., Chau, Y. K., Cooney, J. J., Cullen, W. P., and Maguire, R. J. 1985. Organotin compounds in the aquatic environment: scientific criteria for assessing their effects on environmental quality. National Research Council Canada, 1-284.
Thornhill, D. J., Daniel, M. W., LaJeunesse, T. C., Schmidt, G. W., and Fitt, W. K. 2006. Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodinium. J. Exp. Mar. Biol. Ecol 338, 50–56.
Tong, S. L., Pang, F. Y., Phang, S. M., and Lai, H. C. 1996. Tributyltin distribution in the coastal environment of Peninsular Malaysia. Environ. Pollut 91, 209–216.
Tuchman, N. C., Schollett, M. A., Rier, S. T., and Geddes, P. 2006. Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. Hydrobiologia 561, 167-177.
Uhler, A. D., Durell, G. S., Steunhauer, W. G., and Spellacy, A. M. 1993. Tributyltin levels in bivalve mollusks from the east and west coasts of the United States: results from the 1988–1990 National Status and Trends Mussel Watch Project. Environ. Toxicol. Chem 12, 139–153.
Verde, E. A., McCloskey, L. R. 1998. Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Mar Ecol Prog Ser 168, 147–162.
Warner, M. E., Fitt, W. K., and Schmidt, G. W. 1999. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl. Acad. Sci. U. S. A. 96, 8007–8012.
Warner, M. E., and Suggett, D. J. 2016. The photobiology of Symbiodinium spp.: linking physiological diversity to the implications of stress and resilience. In: Dubinsky Z, Stefano G (eds) The Cnidaria, past, present and future. Springer International Publishing, Switzerland, 489–509.
Weis, V. M. 2008. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol 211, 3059–3066.
Werner, U., Bird, P., Wild, C., Ferdelman, T., Polerecky, L., Eickert, G., Johnstone, R., Hoegh-Guldberg, O., and deBeer, D. 2006. Spatial variability of aerobic and anaerobic mineralization in coral reef sediments (Heron Island, Australia). Mar Ecol Prog Ser 309, 93–105.
Wietheger, A., Fisher, P. L., Gould, K. S., and Davy, S. K. 2015. Sensitivity to oxidative stress is not a definite predictor of thermal sensitivity in symbiotic dinoflagellates. Mar Biol 162, 2067–2077.
Wild, C., Rasheed, M., Werner, U., Franke, U., Johnstone, R., and Huettel, M. 2004. Degradation and mineralization of coral mucus in reef environments. Mar Ecol Prog Ser 267, 159–171.
Winston, G. W., and Di Giulio, R. T. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19, 137–161.
Xu, D. P., Fang, D. A., Zhao, C. S., Jiang, S. L., and Hu, H. Y. 2018. Effect of tributyltin chloride (TBT-Cl) 475 exposure on expression of HSP90β1 in the river pufferfish (Takifugu obscurus): Evidences for its 476 immunologic function involving in exploring process. Gene 666, 9-17.
Ziebis, W., Forster, S., Huettel, M., and Jorgensen, B. B. 1996. Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature 382, 619–622.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *