帳號:guest(3.143.23.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:翁宇成
作者(英文):Wu-Cheng Weng
論文名稱:鈍枝列孔珊瑚共生藻光生理相關的脂質體調節
論文名稱(英文):Photophysiology related lipidomic modulation of the symbiotic algae in coral Seriatopora caliendrum
指導教授:唐川禾
指導教授(英文):Chuan-Ho Tang
口試委員:何宣慶
曾惠馨
唐川禾
口試委員(英文):Hsuan-Ching Ho
Hui-Hsin Tseng
Chuan-Ho Tang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610463113
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:58
關鍵詞:共生藻光生理脂質體學膜脂質
關鍵詞(英文):Symbiotic algaePhotophysiologyLipidomicsMembrane lipid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
隨著環境光照的改變,珊瑚共生藻生理條件會產生相應的變化,例如強烈日照會加速共生藻光合系統中活性氧生成造成氧化壓力升高,進而促發抗氧化調節作用避免或降低細胞氧化傷害。膜脂質為構成細胞的基本結構元素,能夠隨細胞生理處境改變而動態調整。因此本研究假設珊瑚共生藻的膜脂質組成會隨日照而調整,以符合光生理條件的需要。研究中利用脂質體學的研究方法呈現鈍枝列孔珊瑚 (Seriatopora caliendrum)共生藻磷脂醯膽鹼類脂質(GPC)組成的日變化。結果顯示日出前後(9:00對於6:00)光照度增加期間珊瑚共生藻中 lyso-GPCs以及帶有二十二碳六烯酸的GPCs呈明顯增加,而帶有花生四烯酸之GPCs含量則相對減少。此外,白天脂質代謝變化與珊瑚接受到的累積光照呈現高度的相關性,隨著日照量增加帶有二十二碳六烯酸的GPCs明顯減少。夜間(18:00-00:00)共生藻膜脂質組成則未產生明顯改變,但相對于破曉前(6:00)的膜脂質組成則明顯不同。基於上述結果,珊瑚共生藻光生理相關的脂質代謝調節模式可被解釋與光致生理現象及光適應機制較為相關。
Following the change in the illumination, the coral symbiotic algae showed a corresponding change. For instance, strongly illuminating causes an increased production of reactive oxygen species in the photosystem of symbiotic algae to increase the oxidative stress and thus trigger the antioxidant regulations for avoiding or reducing the cell oxidative damage. Membrane lipids constitute the basic structural element to create cell a dynamic structure according to the circumstance. Facing the different situation, the cell should meet the physiological needs by adjusting the membrane lipid composition to mold the suitable membrane characteristics. Therefore, this study hypothesizes that the membrane lipid composition will be changed in the coral symbiotic algae to meet the photophysiological requirements following a diurnal variation of illumination. This study investigates the diurnal changes of glycerophosphocholine (GPC) profile in the symbiotic algae of the coral Seriatopora caliendrum using a lipidomic methodology. The results showed that the sunlight induces an increase of lyso-GPCs and docosahexaenoic acid-possessing GPCs and a decrease of arachidonic acid-possessing GPCs during Illuminance increases (at time point 9:00 vs. 6:00). In addition, a high correlation between the daily light integral and the lipid variation in the symbiotic algae shows during daytime. The ratio of docosahexaenoic acid-possessing GPCs negatively correlates with the daily light integral as one of the major features. During the night times (18:00-00:00), the lipid composition shows an insignificant change in the symbiotic algae. However, this night feature of lipid profile is clearly different from that at daybreak (6:00). Based on the obtained results, the relevance of lipid metabolism to the photophysiology of coral symbiotic algae was thus interpreted to be related to photoinduced physiology and the mechanism of light adaptation.
目錄
謝辭 i
摘要 ii
Abstract iii
第一章、前言 1
第二章、實驗方法 9
2-1. 實驗設計 9
2-2. 葉綠素螢光測定 9
2-3. 共生藻純化 10
2-4. 脂質萃取 11
2-5. 儀器分析 11
2-6. 資料處理與分析 12
2-7. GPCs分類與命名 14
第三章、結果 17
3-1. 珊瑚共生藻之光生理變化 17
3-2. 珊瑚共生藻脂質體組成變化 19
第四章、討論 25
第五章、結論 27
參考文獻 29

何立德 & 王鑫,(2002),台灣的珊瑚礁,遠足文化事業有限公司。

Hopkins, W.G. and P.A. Hüner. 徐善德、廖玉琬編譯,(2006),植物生理學,偉明圖書有限公司。

朱淑嫻,(2011),不同系群共生藻細胞週期與其脂質成份變化關係的探討,國立東華大學海洋生物科技研究所碩士論文。

張家瑋,(2013),珊瑚與共生藻胞內共生中細胞骨架及脂質體形成關係,國立東華大學海洋生物科技研究所碩士論文。

李瑞悅,(2014),利用脂質體學探討兩種淋巴細胞株暴露游離輻射後之生物效應。國立台灣大學公共衛生學院環境衛生學研究所碩士論文。

Abdi, H. & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459.

Allen, J., Davey, H. M., Broadhurst, D., Heald, J. K., Rowland, J. J., Oliver, S. G. & Kell, D. B. (2003). High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nature biotechnology, 21(6), 692.

Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55, 373-399.

Bayr, H. (2005). Reactive oxygen species. Critical care medicine, 33(12), 498-501.

Bielmyer, G. K., Grosell, M., Bhagooli, R., Baker, A. C., Langdon, C., Gillette, P., & Capo, T. R. (2010). Differential effects of copper on three species of scleractinian corals and their algal symbionts (Symbiodinium spp.). Aquatic Toxicology, 97(2), 125-133.



Brown, B. E., Ambarsari, I., Warner, M. E., Fitt, W. K., Dunne, R. P., Gibb, S. W., & Cummings, D. G. (1999). Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs, 18(2), 99-105.

Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E., & Trygg, J. (2006). OPLS discriminant analysis: combining the strengths of PLS‐DA and SIMCA classification. Journal of Chemometrics: A Journal of the Chemometrics Society, 20(8‐10), 341-351.

Castrillo, J. I., & Oliver, S. G. (2004). Yeast as a touchstone in post-genomic research: strategies for integrative analysis in functional genomics. BMB Reports, 37(1), 93-106.

Chen, H. K., Wang, L. H., Chen, W. N. U., Mayfield, A. B., Levy, O., Lin, C. S., & Chen, C. S. (2017). Coral lipid bodies as the relay center interconnecting diel-dependent lipidomic changes in different cellular compartments. Scientific reports, 7(1), 3244.

Coles, S. L., & Jokiel, P. L. (1977). Effects of temperature on photosynthesis and respiration in hermatypic corals. Marine biology, 43(3), 209-216.

Cook, H. W., & McMaster, C. R. (2002). Fatty acid desaturation and chain elongation in eukaryotes. New comprehensive biochemistry, 36, 181-204.

Dabkowska, A. P., Lawrence, M. J., McLain, S. E., & Lorenz, C. D. (2013). On the nature of hydrogen bonding between the phosphatidylcholine head group and water and dimethylsulfoxide. Chemical Physics, 410, 31-36.

Devasagayam, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: current status and future prospects. Japi, 52(794804), 4.

Dobrosotskaya, I. Y., Seegmiller, A. C., Brown, M. S., Goldstein, J. L., & Rawson, R. B. (2002). Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science, 296(5569), 879-883.

Downs, C. A., Fauth, J. E., Downs, V. D., & Ostrander, G. K. (2010). In vitro cell-toxicity screening as an alternative animal model for coral toxicology: effects of heat stress, sulfide, rotenone, cyanide, and cuprous oxide on cell viability and mitochondrial function. Ecotoxicology, 19(1), 171-184.

Eichelmann, H., Oja, V., Rasulov, B., Padu, E., Bichele, I., Pettai, H., ... & Laisk, A. (2004). Development of leaf photosynthetic parameters in Betula pendula Roth leaves: correlations with photosystem I density. Plant Biology, 6(3), 307-318.

Eriksson, L., Trygg, J., & Wold, S. (2008). CV‐ANOVA for significance testing of PLS and OPLS® models. Journal of Chemometrics: A Journal of the Chemometrics Society, 22(11‐12), 594-600.

Farrés, M., Platikanov, S., Tsakovski, S., & Tauler, R. (2015). Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. Journal of Chemometrics, 29(10), 528-536.

Feller, S. E., Gawrisch, K., & MacKerell, A. D. (2002). Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. Journal of the American Chemical Society, 124(2), 318-326.

Franklin, D. J., Hoegh-Guldberg, O., Jones, R. J., & Berges, J. A. (2004). Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Marine Ecology Progress Series, 272, 117-130.

Frolov, V. A., Shnyrova, A. V., & Zimmerberg, J. (2011). Lipid polymorphisms and membrane shape. Cold Spring Harbor perspectives in biology, a004747.

Fournier, A. (2013). The story of symbiosis with zooxanthellae, or how they enable their host to thrive in a nutrient poor environment. Master BioSciences, Rev.1-8.

Fuller, N., & Rand, R. P. (2001). The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophysical journal, 81(1), 243-254.


Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects, 990(1), 87-92.

Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: acquiring and understanding global metabolite data. TRENDS in Biotechnology, 22(5), 245-252.

Gorbunov, M. Y., Kolber, Z. S., Lesser, M. P., & Falkowski, P. G. (2001). Photosynthesis and photoprotection in symbiotic corals. Limnology and Oceanography, 46(1), 75-85.

Hazel, J. R., & Williams, E. E. (1990). The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progress in lipid research, 29(3), 167-227.

Hoegh-Guldberg, O., & Smith, G. J. (1989). Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Marine Ecology Progress Series, 173-186.

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., ... & Knowlton, N. (2007). Coral reefs under rapid climate change and ocean acidification. science, 318(5857), 1737-1742.

Ihnken, S., Eggert, A., & Beardall, J. (2010). Exposure times in rapid light curves affect photosynthetic parameters in algae. Aquatic Botany, 93(3), 185-194.

Jacob, R. F., & Mason, R. P. (2005). Lipid peroxidation induces cholesterol domain formation in model membranes. Journal of Biological Chemistry, 280, 39380-39387.

Komatsu, H., & Okada, S. (1995). Ethanol-induced aggregation and fusion of small phosphatidylcholine liposome: participation of interdigitated membrane formation in their processes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1235(2), 270-280.
Kuanui, P., Chavanich, S., Viyakarn, V., Omori, M., & Lin, C. (2015). Effects of temperature and salinity on survival rate of cultured corals and photosynthetic efficiency of zooxanthellae in coral tissues. Ocean Science Journal, 50(2), 263-268.

Lesser, M. P., & Stochaj, W. R. (1990). Photoadaptation and protection against active forms of oxygen in the symbiotic procaryote Prochloron sp. and its ascidian host. Applied and environmental microbiology, 56(6), 1530-1535.

Levy, O., Dubinsky, Z., Schneider, K., Achituv, Y., Zakai, D., & Gorbunov, M. Y. (2004). Diurnal hysteresis in coral photosynthesis. Marine Ecology Progress Series, 268, 105-117.

Magnusson, G. (1997). Diurnal measurements of Fv/Fm used to improve productivity estimates in macroalgae. Marine Biology, 130(2), 203-208.

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of experimental botany, 51(345), 659-668.

Mishra, N. P., & Ghanotakis, D. F. (1994). Exposure of a photosystem II complex to chemically generated singlet oxygen results in D1 fragments similar to the ones observed during aerobic photoinhibition. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1187(3), 296-300.

Murchie, E. H., & Niyogi, K. K. (2010). Manipulation of photoprotection to improve plant photosynthesis. Plant physiology, pp.110.

Muscatine, L., & Hand, C. (1958). Direct evidence for the transfer of materials from symbiotic algae to the tissues of a coelenterate. Proceedings of the National Academy of Sciences, 44(12), 1259-1263.

Muscantine, L. (1990). The role of symbiotic algae in carbon and energy flux in coral reefs. Ecosystems of the World: Coral Reefs. Elsevier, Amsterdam, 75-87.

Negri, A. P., & Hoogenboom, M. O. (2011). Water contamination reduces the tolerance of coral larvae to thermal stress. PLoS One, 6(5), e19703.

Oku, H., Yamashiro, H., & Onaga, K. (2003). Lipid biosynthesis from [14C]-glucose in the coral Montipora digitata. Fisheries science, 69(3), 625-631.

Ollila, S., Hyvönen, M. T., & Vattulainen, I. (2007). Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. The Journal of Physical Chemistry B, 111(12), 3139-3150.

Orešič, M., Hänninen, V. A., & Vidal-Puig, A. (2008). Lipidomics: a new window to biomedical frontiers. Trends in biotechnology, 26(12), 647-652.

Pamplona, R. (2008). Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1777(10), 1249-1262.

Pandey, P. R., & Roy, S. (2011). Headgroup mediated water insertion into the DPPC bilayer: a molecular dynamics study. The Journal of Physical Chemistry B, 115(12), 3155-3163.

Papina, M., Meziane, T., & Van Woesik, R. (2003). Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135(3), 533-537.

Patton, J. S., & Burris, J. E. (1983). Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae). Marine Biology, 75(2-3), 131-136.

Pawlosky, R. J., Hibbeln, J. R., Novotny, J. A., & Salem, N. (2001). Physiological compartmental analysis of α-linolenic acid metabolism in adult humans. Journal of lipid research, 42(8), 1257-1265.

Rascher, U., Liebig, M., & Lüttge, U. (2000). Evaluation of instant light‐response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell & Environment, 23(12), 1397-1405.

Ralph, P., Gademann, R., Larkum, A., & Kühl, M. (2002). Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues. Marine Biology, 141(4), 639-646.

Ralph, P. J., & Gademann, R. (2005). Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic botany, 82(3), 222-237.

Rashed, M. S. (2001). Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases. Journal of Chromatography B: Biomedical Sciences and Applications, 758(1), 27-48.

Rosenqvist, E., & van Kooten, O. (2003). Chlorophyll fluorescence: a general description and nomenclature. Practical Applications of Chlorophyll Fluorescence in Plant Biology, pp.31–77.

Rozentsvet, O. A., Nesterov, V. N., & Sinyutina, N. F. (2012). The effect of copper ions on the lipid composition of subcellular membranes in Hydrilla verticillata. Chemosphere, 89(1), 108-113.

Runcie, J. W., Gurgel, C. F., & Mcdermid, K. J. (2008). In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. European Journal of Phycology, 43(4), 377-388.

Schansker, G., Tóth, S. Z., & Strasser, R. J. (2006). Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1757(7), 787-797.

Schreiber, U. (1997). Chlorophyll fluorescence and photosynthetic energy conversion: Simple introductory experiments with the TEACHING-PAM Chlorophyll Fluorometer. Effeltrich, Germany: Heinz Walz GmbH.

Schreiber, U., Gademann, R. R. P. J., Ralph, P. J., & Larkum, A. W. D. (1997). Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant and Cell Physiology, 38(8), 945-951.

Schreiber, U. (2004). Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. Chlorophyll a fluorescence : A Signature of Photosynthesis, pp.279-319.

Shinn, E. A. (1966). Coral growth-rate, an environmental indicator. Journal of Paleontology, pp.233-240.

Smith, D. J., Suggett, D. J., & Baker, N. R. (2005). Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals?. Global Change Biology, 11(1), 1-11.

Smith, H. L., Howland, M. C., Szmodis, A. W., Li, Q., Daemen, L. L., Parikh, A. N., & Majewski, J. (2009). Early stages of oxidative stress-induced membrane permeabilization: a neutron reflectometry study. Journal of the American Chemical Society, 131(10), 3631-3638.

Solanky, K. S., Bailey, N. J., Beckwith-Hall, B. M., Davis, A., Bingham, S., Holmes, E., ... & Cassidy, A. (2003). Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Analytical biochemistry, 323(2), 197-204.

Sorek, M., & Levy, O. (2012). Influence of the quantity and quality of light on photosynthetic periodicity in coral endosymbiotic algae. PLoS One, 7(8), e43264.

Sorek, M., Yacobi, Y. Z., Roopin, M., Berman-Frank, I., & Levy, O. (2013). Photosynthetic circadian rhythmicity patterns of Symbiodium, the coral endosymbiotic algae. Proceedings of the Royal Society B, 280(1759), 1-9.

Tang, C. H., Tsao, P. N., Lin, C. Y., Fang, L. S., Lee, S. H., & Wang, W. H. (2012). Phosphorylcholine-containing lipid molecular species profiling in biological tissue using a fast HPLC/QqQ-MS method. Analytical and bioanalytical chemistry, 404(10), 2949-2961.

Tang, C. H., Lin, C. Y., Lee, S. H., & Wang, W. H. (2014). Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum. Aquatic toxicology, 148, 1-8.
Tang, C. H., Ku, P. C., Lin, C. Y., Chen, T. H., Lee, K. H., Lee, S. H., & Wang, W. H. (2015). Intra-colonial functional differentiation-related modulation of the cellular membrane in a pocilloporid coral Seriatopora caliendrum. Marine biotechnology, 17(5), 633-643.

Tang, C. H., Lin, C. Y., Lee, S. H., & Wang, W. H. (2017). Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane. Aquatic toxicology, 187, 72-81.

Tang, C. H., Lin, C. Y., Sun, P. P., Lee, S. H., & Wang, W. H. (2018). Modeling the effects of Irgarol 1051 on coral using lipidomic methodology for environmental monitoring and assessment. Science of The Total Environment, 627, 571-578.

Trench, R. K. (1979). The cell biology of plant-animal symbiosis. Annual Review of Plant Physiology, 30(1), 485-531.

Van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: where they are and how they behave. Nature reviews Molecular cell biology, 9(2), 112.

Viant, M. R., Rosenblum, E. S., & Tjeerdema, R. S. (2003). NMR-based metabolomics: a powerful approach for characterizing the effects of environmental stressors on organism health. Environmental science & technology, 37(21), 4982-4989.

Wassall, S. R., & Stillwell, W. (2009). Polyunsaturated fatty acid–cholesterol interactions: domain formation in membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(1), 24-32.

Wenk, M. R. (2005). The emerging field of lipidomics. Nature reviews Drug discovery, 4(7), 594.

Wilkinson, C., Lindén, O., Cesar, H., Hodgson, G., Rubens, J., & Strong, A. E. (1999). Ecological and socioeconomic impacts of 1998 coral mortality in the Indian Ocean: An ENSO impact and a warning of future change?. Ambio, 28(2), 188-196.

Worley, B., & Powers, R. (2013). Multivariate analysis in metabolomics. Current Metabolomics, 1(1), 92-107.

Worley, B., & Powers, R. (2016). PCA as a practical indicator of OPLS-DA model reliability. Current metabolomics, 4(2), 97-103.

Wu, T. Y., Dai, C. F., & Fan, T. Y. (2006). Effects of Temperature on the Oxygen-and Fluorescence-Based Estimates of Photosynthetic Parameters in the Reef Coral Stylophora pistillata. Journal of the Fisheries Society of Taiwan, 33(3), 253-263.

Yost, D. M., Jones, R. J., & Mitchelmore, C. L. (2010). Alterations in dimethylsulfoniopropionate (DMSP) levels in the coral Montastraea franksi in response to copper exposure. Aquatic Toxicology, 98(4), 367-373.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *