帳號:guest(18.119.139.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李佩真
作者(英文):Pei-Jhen Li
論文名稱:分離自海綿中可培養的假弧菌屬細菌多樣性與其抗微生物活性
論文名稱(英文):Culturable diversity and antimicrobrial activity of Pseudovibrio spp. from marine sponges
指導教授:郭傑民
指導教授(英文):Jimmy Kuo
口試委員:林重宏
朱育民
口試委員(英文):Chorng-Horng Lin
Yu-Min Ju
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610463201
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:84
關鍵詞:海綿海綿伴生細菌抗菌活性假弧菌屬
關鍵詞(英文):marine spongesponge-associated bacteriaantimicrobial activityPseudovibrio
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
具脫氮能力的假弧菌屬細菌(Alphaproteobacteria; Rhodobacterales; Rhodobac teraceae)廣泛存在於海洋環境中(特別是海綿)。假弧菌屬菌於2004年,在台灣墾丁國家公園南灣海水中首次被分離與描述。這些兼性厭氧的海洋細菌常在海洋無脊椎動物中被發現,如海鞘、被囊動物、藻類、管蟲、珊瑚與海綿,事實上,假弧菌屬細菌被認為與宿主共生關係中扮演重要角色,此外,多個研究指出此屬菌株具廣效的抗菌活性,可為發現新穎活性天然物的來源。在本研究中,由9種海綿樣本以培養的方法篩選假弧菌屬菌株,海綿樣本採集自國立海洋生物博物館(NMMBA)水族實驗中心與南灣附近海域。從三種不同選擇性培養基共分離867株細菌,其中301株顯示具脫氮活性,經16S rRNA定序確定其中188株為假弧菌屬菌株。親緣關係分析顯示,大部分菌株皆屬於Pseudovibrio denitrificans (157株,83.51%)。然而,有些分離株很難辨識到種,顯示其中有些菌株可能為新種。針對5株測試目標細菌與1株真菌進行抗菌活性分析,發現有52株(27.96%)假弧菌屬分離株對至少一株病原菌具有抗菌活性。吾人研究結果顯示海綿可能是發現具潛力藥物分子的假弧菌屬菌株的重要來源。
Denitrifying bacteria of the genus Pseudovibrio (Alphaproteobacteria: Rhodobacterales: Rhodobacteraceae) are widely distributed in the in the marine environment, especially within sponges. They were first isolated and described in 2004 from seawater of Nanwan Bay, Kenting National Park, Taiwan. These facultatively anaerobic marine bacteria were repeatedly isolated from marine invertebrates such as ascidians, tunicates, algae, tube worms, corals and sponges. Pseudovibrio is in fact believed to play an important role in symbiotic relationships with their hosts. Moreover, antimicrobial activities within Pseudovibrio sp. toward broad-spectrum of pathogens has been described many times, suggesting they could be used as a novel source of bioactive compounds. In the present study, 9 sponge samples were used to screen for Pseudovibrio strains by using a culture-based method. Sponge samples were collected from either the husbandry center, National Museum of Marine Biology and Aquarium (NMMBA) or Nanwan Bay, Taiwan. A total of 867 bacterial strains were isolated from three different selective media, among which 301 strains displayed denitrifying activity and within which 188 strains were confirmed to be Pseudovibrio based on 16s rRNA gene sequences. Phylogenetic analysis of these strains based on 16S rDNA fragments indicated that most of the isolates belong to Pseudovibrio denitrificans (157 isolates, 83.51%). However, many isolates are difficult to resolve to species suggesting some of them might be new Pseudovibrio species. All the Pseudovibrio isolates were screened for their antimicrobial activity against five test bacteria and a fungus. Fifty-two (27.96%) of the isolates showed activity against at least one test microbes. Our results demonstrate that marine sponge could be a source of Pseudovibrio strains which have a great potential in discovery of usefully medical molecules.
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1前言 1
1.2假弧菌屬的簡介 2
1.3假弧菌屬的分離和其生物活性 4
1.4假弧菌屬之二次代謝產物 5
1.5假弧菌屬菌生理學相關研究 6
1.6使用分子生物學方法鑑定菌株 7
1.7研究動機與目的 8
第二章 實驗材料與方法 15
2.1 藥品、儀器與培養基 15
2.1.1藥品 15
2.1.2微生物培養基 16
2.1.3實驗儀器 16
2.1.4生物活性實驗測試菌株 17
2.2 培養基配置 18
2.2.1菌種培養基 18
2.2.2選擇性培養基 20
2.3 膠體幾丁質製備方法 21
2.4 採樣及細菌分離培養 22
2.4.1海綿樣本來源 22
2.4.2樣本處理 22
2.4.3平板培養與活菌計數 22
2.4.4脫氮能力測試 23
2.5 16S rDNA序列鑑定假弧菌屬細菌 23
2.5.1萃取與純化細菌之基因體DNA 23
2.5.2聚合酶連鎖反應增幅16S rDNA片段 24
2.5.3 DNA凝膠電泳分析 24
2.5.5 DNA純化 25
2.5.6 DNA序列處理與Blast序列比對 26
2.5.7分子親緣關係分析 26
2.6 假弧菌屬菌株洋菜錠抗菌活性試驗 26
2.6.1抗菌活性測試目標菌株培養 26
2.6.2抗菌活性篩選 27
2.7利用隨機擴增多形態DNA區分假弧菌屬分離株 27
2.7.1以RAPD引子隨機增幅假弧菌屬分離株基因體DNA片段 27
2.7.2 RAPD電泳分析 28
2.7.3 RAPD圖譜群聚分析 29
第三章 結果與討論 31
3.1海綿樣本採集與型態鑑種 31
3.2海綿分離菌株平板培養結果 32
3.3 脫氮能力測試 32
3.4 16S rDNA序列鑑定假弧菌屬分離株分析與培養 33
3.5 16S rDNA序列之分子親緣關係分析 34
3.6假弧菌屬菌株抗菌活性試驗 35
3.7隨機擴增多形態DNA分析結果 36
第四章 結論與建議 61
4.1結論 61
4.2建議 61
參考文獻 63
附錄 73
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.

Babalola, O.O., Osir, E.O., and Sanni, A.I. (2002) Characterization of potential ethylene-producing rhizosphere bacteria of Striga-infested maize and sorghum. African Journal of Biotechnology 1: 67-69.

Bondarev, V. (2012) Physiology of Pseudovibrio sp. FO-BEG1-a facultatively oligotrophic and metabolically versatile bacterium. Bremen, DE: University of Bremen. PhD Thesis.

Bondarev, V., Richter, M., Romano, S., Piel, J., Schwedt, A., and Schulz‐Vogt, H.N. (2013) The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environmental Microbiology 15: 2095-2113.

Braekman, J.C., and Daloze, D. (1986) Chemical defence in sponges. Pure and Applied Chemistry 58: 357-364.

Chen, Y.-H., Kuo, J., Sung, P.-J., Chang, Y.-C., Lu, M.-C., Wong, T.-Y., Liu, J.-K., Weng, C.-F., Twan, W.-H., and Kuo, F.-W. (2012) Isolation of marine bacteria with antimicrobial activities from cultured and field-collected soft corals. World Journal of Microbiology and Biotechnology 28: 3269-3279.

Crippen, G.M. (1977) A novel approach to calculation of conformation: distance geometry. Journal of Computational Physics 24: 96-107.

Crowley, S.P., O'Gara, F., O'Sullivan, O., Cotter, P.D., and Dobson, A.D. (2014) Marine Pseudovibrio sp. as a novel source of antimicrobials. Marine Drugs 12: 5916-5929.

Desai, J.D., and Banat, I.M. (1997) Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews 61: 47-64.

Devasahayam, G., Scheld, W.M., and Hoffman, P.S. (2010) Newer antibacterial drugs for a new century. Expert Opinion on Investigational Drugs 19: 215-234.

Efron, B. (1992) Bootstrap methods: another look at the jackknife. In: Breakthroughs in statistics. Kotz, S., and Johnson, N.L. (eds): Springer New York. 569-593.

El-Hamshary, O., Sheikh, H.M.A., and Khattab, A. (2012) Molecular characterization of bacteria isolated from the Kingdom of Saudi Arabia and their uses against pathogenic fungi causing dermatological diseases. African Journal of Biotechnology 11: 15510-15515.

Enticknap, J.J., Kelly, M., Peraud, O., and Hill, R.T. (2006) Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Applied and Environmental Microbiology 72: 3724-3732.

Fenical, W., and Jensen, P.R. (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nature Chemical Biology 2: 666-673.

Flemer, B., Kennedy, J., Margassery, L., Morrissey, J., O’Gara, F., and Dobson, A. (2012) Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp. Journal of Applied Microbiology 112: 289-301.

Fox, G.c.-a., Stackebrandt, E., Hespell, R., Gibson, J., Maniloff, J., Dyer, T., Wolfe, R., Balch, W., Tanner, R., and Magrum, L. (1980) The phylogeny of prokaryotes. Science 209: 457-463.

Fredriksson, N.J., Hermansson, M., and Wilén, B.-M. (2013) The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. PLoS One 8: e76431.

Fukunaga, Y., Kurahashi, M., Tanaka, K., Yanagi, K., Yokota, A., and Harayama, S. (2006) Pseudovibrio ascidiaceicola sp. nov., isolated from ascidians (sea squirts). International Journal of Systematic and Evolutionary Microbiology 56: 343-347.

Graça, A.P., Bondoso, J., Gaspar, H., Xavier, J.R., Monteiro, M.C., de la Cruz, M., Oves-Costales, D., Vicente, F., and Lage, O.M. (2013) Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS One 8: e78992.

Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.

Hosoya, S., and Yokota, A. (2007) Pseudovibrio japonicus sp. nov., isolated from coastal seawater in Japan. International Journal of Systematic and Evolutionary Microbiology 57: 1952-1955.

Hsieh, Y.-J., and Wanner, B.L. (2010) Global regulation by the seven-component P i signaling system. Current Opinion in Microbiology 13: 198-203.

Hsu, S., and Lockwood, J. (1975) Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied Microbiology 29: 422-426.

Kennedy, J., Baker, P., Piper, C., Cotter, P.D., Walsh, M., Mooij, M.J., Bourke, M.B., Rea, M.C., O’Connor, P.M., and Ross, R.P. (2009) Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters. Marine Biotechnology 11: 384-396.

Koopmans, M., and Wijffels, R.H. (2008) Seasonal growth rate of the sponge Haliclona oculata (Demospongiae: Haplosclerida). Marine Biotechnology 10: 502-510.

Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874.

Lamarche, M.G., Wanner, B.L., Crépin, S., and Harel, J. (2008) The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiology Reviews 32: 461-473.

Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., and Pace, N.R. (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences 82: 6955-6959.

Laport, M., Santos, O., and Muricy, G. (2009) Marine sponges: potential sources of new antimicrobial drugs. Current Pharmaceutical Biotechnology 10: 86-105.

Li, C.-W., Chen, J.-Y., and Hua, T.-E. (1998) Precambrian sponges with cellular structures. Science 279: 879-882.

Lubin, E.A., Henry, J.T., Fiebig, A., Crosson, S., and Laub, M.T. (2016) Identification of the PhoB regulon and role of PhoU in the phosphate starvation response of Caulobacter crescentus. Journal of Bacteriology 198: 187-200.

Maloof, A.C., Rose, C.V., Beach, R., Samuels, B.M., Calmet, C.C., Erwin, D.H., Poirier, G.R., Yao, N., and Simons, F.J. (2010) Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience 3: 653-659.

Margassery, L., Kennedy, J., O’Gara, F., Dobson, A., and Morrissey, J. (2012) Diversity and antibacterial activity of bacteria isolated from the coastal marine sponges Amphilectus fucorum and Eurypon major. Letters in Applied Microbiology 55: 2-8.

Martín, J.F. (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. Journal of Bacteriology 186: 5197-5201.

Mulligan, C.N. (2005) Environmental applications for biosurfactants. Environmental Pollution 133: 183-198.

Nicacio, K.J., Ióca, L.P., Fróes, A.M., Leomil, L., Appolinario, L.R., Thompson, C.C., Thompson, F.L., Ferreira, A.G., Williams, D.E., and Andersen, R.J. (2017) Cultures of the marine bacterium Pseudovibrio denitrificans Ab134 produce bromotyrosine-derived alkaloids previously only isolated from marine sponges. Journal of Natural Products 80: 235-240.

O'Halloran, J., Barbosa, T., Morrissey, J., Kennedy, J., O'Gara, F., and Dobson, A. (2011) Diversity and antimicrobial activity of Pseudovibrio spp. from Irish marine sponges. Journal of Applied Microbiology 110: 1495-1508.

O'Halloran, J.A., Barbosa, T.M., Morrissey, J.P., Kennedy, J., Dobson, A.D., and O’Gara, F. (2013) Pseudovibrio axinellae sp. nov., isolated from an Irish marine sponge. International Journal of Systematic and Evolutionary Microbiology 63: 141-145.

Paytan, A., and McLaughlin, K. (2007) The oceanic phosphorus cycle. Chemical Reviews 107: 563-576.

Penesyan, A., Tebben, J., Lee, M., Thomas, T., Kjelleberg, S., Harder, T., and Egan, S. (2011) Identification of the antibacterial compound produced by the marine epiphytic bacterium Pseudovibrio sp. D323 and related sponge-associated bacteria. Marine Drugs 9: 1391-1402.

Pietra, F. (1997) Secondary metabolites from marine microorganisms: bacteria, protozoa, algae and fungi. Achievements and prospects. Natural Product Reports 14: 453-464.

Pineda, M.-C., Strehlow, B., Sternel, M., Duckworth, A., Den Haan, J., Jones, R., and Webster, N.S. (2017) Effects of sediment smothering on the sponge holobiont with implications for dredging management. Scientific Reports 7: 5156.

Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., and Rafalski, A. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2: 225-238.

Rédou, V., Navarri, M., Meslet-Cladière, L., Barbier, G., and Burgaud, G. (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Applied and Environmental Microbiology 81: 3571-3583.

Riesenfeld, C.S., Murray, A.E., and Baker, B.J. (2008) Characterization of the microbial community and polyketide biosynthetic potential in the palmerolide-producing tunicate Synoicum adareanum. Journal of Natural Products 71: 1812-1818.

Rizzo, C., Michaud, L., Hörmann, B., Gerçe, B., Syldatk, C., Hausmann, R., De Domenico, E., and Giudice, A.L. (2013) Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds. Marine Pollution Bulletin 70: 125-133.

Roberts, E., and Lindow, S. (2014) Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora. The ISME Journal 8: 359-368.

Rodrigues, L., Banat, I.M., Teixeira, J., and Oliveira, R. (2006) Biosurfactants: potential applications in medicine. Journal of Antimicrobial Chemotherapy 57: 609-618.

Romano, S., Fernàndez-Guerra, A., Reen, F.J., Glöckner, F.O., Crowley, S.P., O'Sullivan, O., Cotter, P.D., Adams, C., Dobson, A.D., and O'Gara, F. (2016) Comparative genomic analysis reveals a diverse repertoire of genes involved in Prokaryote-Eukaryote interactions within the Pseudovibrio Genus. Frontiers in Microbiology 7: 387.

Romano, S., Schulz-Vogt, H.N., González, J.M., and Bondarev, V. (2015) Phosphate limitation induces drastic physiological changes, virulence-related gene expression, and secondary metabolite production in Pseudovibrio sp. strain FO-BEG1. Applied and Environmental Microbiology 81: 3518-3528.

Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.

Santos, O.C., Pontes, P.V., Santos, J.F., Muricy, G., Giambiagi-deMarval, M., and Laport, M.S. (2010) Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Research in Microbiology 161: 604-612.

Saxena, S., Verma, J., and Modi, D.R. (2014) RAPD-PCR and 16S rDNA phylogenetic analysis of alkaline protease producing bacteria isolated from soil of India: Identification and detection of genetic variability. Journal of Genetic Engineering and Biotechnology 12: 27-35.

Sertan-de Guzman, A.A., Predicala, R.Z., Bernardo, E.B., Neilan, B.A., Elardo, S.P., Mangalindan, G.C., Tasdemir, D., Ireland, C.M., Barraquio, W.L., and Concepcion, G.P. (2007) Pseudovibrio denitrificans strain Z143-1, a heptylprodigiosin-producing bacterium isolated from a Philippine tunicate. FEMS Microbiology Letters 277: 188-196.

Shieh, W.Y., Lin, Y.-T., and Jean, W.D. (2004) Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. International Journal of Systematic and Evolutionary Microbiology 54: 2307-2312.

Taylor, M.W., Radax, R., Steger, D., and Wagner, M. (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews 71: 295-347.

Thomas, T.R.A., Kavlekar, D.P., and LokaBharathi, P.A. (2010) Marine drugs from sponge-microbe association-a review. Marine Drugs 8: 1417-1468.

Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.

Thompson, J.D., Plewniak, F., and Poch, O. (1999) A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Research 27: 2682-2690.

VanBogelen, R.A., Olson, E.R., Wanner, B.L., and Neidhardt, F.C. (1996) Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. Journal of Bacteriology 178: 4344-4366.

Vizcaino, M.I. (2011) The chemical defense of Pseudopterogorgia americana: a focus on the antimicrobial potential of a Pseudovibrio sp.: South Carolina, USA: University of South Carolina. PhD Thesis.

Webster, N.S., and Taylor, M.W. (2012) Marine sponges and their microbial symbionts: love and other relationships. Environmental Microbiology 14: 335-346.

Wilkinson, C.R. (1983) Net primary productivity in coral reef sponges. Science 219: 410-412.

Woese, C.R., and Fox, G.E. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences 74: 5088-5090.

Woese, C.R., Kandler, O., and Wheelis, M.L. (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences 87: 4576-4579.

Xu, Y., Li, Q., Tian, R., Lai, Q., and Zhang, Y. (2015) Pseudovibrio hongkongensis sp. nov., isolated from a marine flatworm. Antonie Van Leeuwenhoek 108: 127-132.

Yang, H., Liu, T., Zhang, G., Chen, J., Gu, J., Yuan, L., and He, G. (2017) Genotyping of Lactobacillus sanfranciscensis isolates from Chinese traditional sourdoughs by multilocus sequence typing and multiplex RAPD-PCR. International Journal of Food Microbiology 258: 50-57.

Zhang, Y., Li, Q., Tian, R., Lai, Q., and Xu, Y. (2016) Pseudovibrio stylochi sp. nov., isolated from a marine flatworm. International Journal of Systematic and Evolutionary Microbiology 66: 2025-2029.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *