帳號:guest(3.15.22.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:張欽雄
作者(英文):Cin-Syong Jhang
論文名稱:In Silico Prediction of Caco-2 Permeability by Quantitative Structure Activity Relationship Modeling Based on Hierarchical Support Vector Regression
論文名稱(英文):In Silico Prediction of Caco-2 Permeability by Quantitative Structure Activity Relationship Modeling Based on Hierarchical Support Vector Regression
指導教授:梁剛荐
指導教授(英文):Max-K. Leong
口試委員:張秀華
翁慶豐
口試委員(英文):Hsiu-Hua Chang
Ching-Feng Weng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610512002
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:122
關鍵詞(英文):drug absorptionpassive diffusionactive transporthuman colon carcinoma monolayer cell (Caco-2)Caco-2 permeabilityhierarchical support vector regressionQSAR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
Oral administration is the preferred and major route of choice for medication. As such, drug absorption is one of critical drug metabolism and pharmacokinetics (DM/PK) parameters that should be taken into consideration in the process of drug discovery and development. The human colon carcinoma cell monolayer (Caco-2) has been used frequently as a simplified in vitro model of intestinal absorption. A nonlinear quantitative structure–activity relationship (QSAR) model was built in this investigation using the novel machine learning-based hierarchical support vector regression (HSVR) scheme to analysis and construct the extremely complicated relationships between descriptors and Caco-2 permeability that can take place through various passive diffusion and carrier-mediated active transport routes. The predictions by HSVR were found to be in good agreement with the observed values for the molecules in the training set (n = 104, r2 = 0.91, = 0.81, RMSE = 0.20, s = 0.18), test set (n = 26, q2 = 0.70–0.85, RMSE = 0.38, s = 0.20), and outlier set (n = 14, q2 = 0.76–0.95, RMSE = 0.24, s = 0.17). When subjected to a variety of statistical validations, the developed HSVR model consistently passed strictest criteria. Furthermore, the mock test can justify the predictivity of HSVR. As a result, this HSVR model can be adopted to promote drug discovery and development.
CONTENTS i
ABSTRACT iii
FIGURE v
TABLE vii
1. Introduction 1
2. Material and method 5
2.1 Data collection 5
2.2 Molecular descriptors 5
2.3 Descriptor selection 6
2.4 Dataset selection 7
2.5 Support Vector Regression 7
2.6 Hierarchical Support Vector Regression 8
2.7 Predictive Evaluation 8
2.8 Classification 11
3. Results 13
3.1 Dataset selection 13
3.2 SVR models 13
3.3 HSVR model 15
3.4 Predictive Evaluations 17
3.5 Mock test 17
3.6 Classification 18
4. Discussion 21
5. Conclusion 27
6. REFERENCES 29
7. Figure 41
8. Table 59
9. Table S1 67
Agatonovic-Kustrin, S., Beresford, R. & Yusof, A. P. M. (2001). Theoretically-derived molecular descriptors important in human intestinal absorption. J. Pharm. Biomed. Anal., 25(2), 227-237. doi: 10.1016/S0731-7085(00)00492-1
Artursson, P. & Bergström, C. A. S. (2004). Intestinal Absorption: The Role of Polar Surface Area. In H. van de Waterbeemd.H. Lennernäs & P. Artursson (Eds.), Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability (Vol. 18, pp. 339-357). Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.
Artursson, P. & Magnusson, C. (1990). Epithelial transport of drugs in cell culture. II: Effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelial (Caco-2) cells. J. Pharm. Sci., 79(7), 595-600. doi: 10.1002/jps.2600790710
B. Sánchez, A., C. Calpena, A., Mallandrich, M. & Clares, B. (2019). Validation of an Ex Vivo Permeation Method for the Intestinal Permeability of Different BCS Drugs and Its Correlation with Caco-2 In Vitro Experiments. Pharmaceutics, 11(12), 638. doi: 10.3390/pharmaceutics11120638
Bain, L. J., McLachlan, J. B. & LeBlanc, G. A. (1997). Structure-activity relationships for xenobiotic transport substrates and inhibitory ligands of P-glycoprotein. Environ. Health Perspect., 105(8), 812-818. doi: 10.1289/ehp.97105812
Bergström, C. A. S., Bolin, S., Artursson, P., Rönn, R. & Sandström, A. (2009). Hepatitis C virus NS3 protease inhibitors: Large, flexible molecules of peptide origin show satisfactory permeability across Caco-2 cells. Eur. J. Pharm. Sci., 38(5), 556-563. doi: 10.1016/j.ejps.2009.10.004
Bergström, C. A. S., Strafford, M., Lazorova, L., Avdeef, A., Luthman, K. & Artursson, P. (2003). Absorption Classification of Oral Drugs Based on Molecular Surface Properties. J. Med. Chem., 46(4), 558-570. doi: 10.1021/jm020986i
Besler, B. H., Merz Jr., K. M. & Kollman, P. A. (1990). Atomic charges derived from semiempirical methods. J. Comput. Chem., 11(4), 431-439. doi: 10.1002/jcc.540110404
Billat, P.-A., Roger, E., Faure, S. & Lagarce, F. (2017). Models for drug absorption from the small intestine: where are we and where are we going? Drug Discov. Today, 22(5), 761-775. doi: 10.1016/j.drudis.2017.01.007
Breiman, L. & Spector, P. (1992). Submodel Selection and Evaluation in Regression. The X-Random Case. Int. Stat. Rev., 60(3), 291-319. doi: 10.2307/1403680
Burton, P. S., Conradi, R. A., Hilgers, A. R., Ho, N. F. H. & Maggiora, L. L. (1992). The relationship between peptide structure and transport across epithelial cell monolayers. J. Control. Release, 19(1), 87-97. doi: 10.1016/0168-3659(92)90067-2
Chan, E. C. Y., Tan, W. L., Ho, P. C. & Fang, L. J. (2005). Modeling Caco-2 permeability of drugs using immobilized artificial membrane chromatography and physicochemical descriptors. J. Chromatogr. A, 1072(2), 159-168. doi: 10.1016/j.chroma.2005.03.006
Chi, C.-T., Lee, M.-H., Weng, C.-F. & Leong, M. K. (2019). In Silico Prediction of PAMPA Effective Permeability Using a Two-QSAR Approach. Int. J. Mol. Sci., 20(13), 3170. doi: 10.3390/ijms20133170
Chirico, N. & Gramatica, P. (2011). Real External Predictivity of QSAR Models: How To Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient. J. Chem Inf. Model., 51(9), 2320-2335. doi: 10.1021/ci200211n
Chirico, N. & Gramatica, P. (2012). Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection. J. Chem Inf. Model., 52(8), 2044-2058. doi: 10.1021/ci300084j
Chmiel, T., Mieszkowska, A., Kempińska-Kupczyk, D., Kot-Wasik, A., Namieśnik, J. & Mazerska, Z. (2019). The impact of lipophilicity on environmental processes, drug delivery and bioavailability of food components. Microchem J., 146, 393-406. doi: 10.1016/j.microc.2019.01.030
Clark, A. M., Dole, K., Coulon-Spektor, A., McNutt, A., Grass, G., Freundlich, J. S., . . . Ekins, S. (2015). Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets. J. Chem. Inf. Model., 55(6), 1231-1245. doi: 10.1021/acs.jcim.5b00143
Clark, D. E. (1999). Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J. Pharm. Sci., 88(8), 807-814. doi: 10.1021/js9804011
Consonni, V., Ballabio, D. & Todeschini, R. (2009). Comments on the Definition of the Q2 Parameter for QSAR Validation. J. Chem Inf. Model., 49(7), 1669-1678. doi: 10.1021/ci900115y
Cortes, C. & Vapnik, V. (1995). Support-vector networks. Mach. Learn., 20(3), 273-297. doi: 10.1007/bf00994018
Dahlgren, D. & Lennernäs, H. (2019). Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches. Pharmaceutics, 11(8), 411. doi: 10.3390/pharmaceutics11080411
Deconinck, E., Verstraete, T., Van Gyseghem, E., Vander Heyden, Y. & Coomans, D. (2012). Orthogonal Chromatographic Descriptors for Modelling Caco-2 Drug Permeability. J. Chromatogr. Sci., 50(3), 175-183. doi: 10.1093/chromsci/bmr044
Değim, Z. (2005). Prediction of Permeability Coefficients of Compounds Through Caco-2 Cell Monolayer Using Artificial Neural Network Analysis. Drug Dev. Ind. Pharm., 31(9), 935-942. doi: 10.1080/03639040500274336
Deng, X., Zhang, G., Shen, C., Yin, J. & Meng, Q. (2013). Hollow fiber culture accelerates differentiation of Caco-2 cells. Appl. Microbiol. Biotechnol., 97(15), 6943-6955. doi: 10.1007/s00253-013-4975-x
Di Fenza, A., Alagona, G., Ghio, C., Leonardi, R., Giolitti, A. & Madami, A. (2007). Caco-2 cell permeability modelling: a neural network coupled genetic algorithm approach. J. Comput.-Aided Mol. Des., 21(4), 207-221. doi: 10.1007/s10822-006-9098-3
Ebert, B., Seidel, A. & Lampen, A. (2005). Identification of BCRP as transporter of benzo[ a ]pyrene conjugates metabolically formed in Caco-2 cells and its induction by Ah-receptor agonists. Carcinogenesis, 26(10), 1754-1763. doi: 10.1093/carcin/bgi139
Englund, G., Rorsman, F., Rönnblom, A., Karlbom, U., Lazorova, L., Gråsjö, J., . . . Artursson, P. (2006). Regional levels of drug transporters along the human intestinal tract: Co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur. J. Pharm. Sci., 29(3), 269-277. doi: 10.1016/j.ejps.2006.04.010
Faassen, F., Kelder, J., Lenders, J., Onderwater, R. & Vromans, H. (2003a). Physicochemical Properties and Transport of Steroids Across Caco-2 Cells. Pharm. Res., 20(2), 177-186. doi: 10.1023/a:1022210801734
Faassen, F., Vogel, G., Spanings, H. & Vromans, H. (2003b). Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs. Int. J. Pharm., 263(1–2), 113-122. doi: 10.1016/S0378-5173(03)00372-7
Ferté, J. (2000). Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. Eur. J. Biochem., 267(2), 277-294. doi: 10.1046/j.1432-1327.2000.01046.x
Foley, D. W., Rajamanickam, J., Bailey, P. D. & Meredith, D. (2010). Bioavailability Through PepT1: The Role of Computer Modelling in Intelligent Drug Design. Curr. Comput.-Aided Drug Des., 6(1), 68-78. doi: 10.2174/157340910790980133
Fridén, M., Winiwarter, S., Jerndal, G., Bengtsson, O., Wan, H., Bredberg, U., . . . Antonsson, M. (2009). Structure−Brain Exposure Relationships in Rat and Human Using a Novel Data Set of Unbound Drug Concentrations in Brain Interstitial and Cerebrospinal Fluids. J. Med. Chem., 52(20), 6233-6243. doi: 10.1021/jm901036q
Fujiwara, S.-i., Yamashita, F. & Hashida, M. (2002). Prediction of Caco-2 cell permeability using a combination of MO-calculation and neural network. Int. J. Pharm., 237(1–2), 95-105. doi: 10.1016/S0378-5173(02)00045-5
Garg, P., Dhakne, R. & Belekar, V. (2015). Role of breast cancer resistance protein (BCRP) as active efflux transporter on blood-brain barrier (BBB) permeability. Mol. Divers., 19(1), 163-172. doi: 10.1007/s11030-014-9562-2
Gerebtzoff, G. & Seelig, A. (2006). In Silico Prediction of Blood−Brain Barrier Permeation Using the Calculated Molecular Cross-Sectional Area as Main Parameter. J. Chem Inf. Model., 46(6), 2638-2650. doi: 10.1021/ci0600814
Gnanadesikan, R. & Kettenring, J. R. (1972). Robust Estimates, Residuals, and Outlier Detection with Multiresponse Data. Biometrics, 28(1), 81-124. doi: 10.2307/2528963
Goetz, G. H., Shalaeva, M., Caron, G., Ermondi, G. & Philippe, L. (2017). Relationship between Passive Permeability and Molecular Polarity Using Block Relevance Analysis. Mol. Pharm., 14(2), 386-393. doi: 10.1021/acs.molpharmaceut.6b00724
Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y.-D., Lee, K.-H. & Tropsha, A. (2003). Rational selection of training and test sets for the development of validated QSAR models. J. Comput.-Aided Mol. Des., 17(2), 241-253. doi: 10.1023/A:1025386326946
Gonzales, G. B., Van Camp, J., Zotti, M., Kobayashi, V., Grootaert, C., Raes, K. & Smagghe, G. (2015). Two- and three-dimensional quantitative structure–permeability relationship of flavonoids in Caco-2 cells using stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and pharmacophore (GALAHAD)-based comparative molecular similarity index analysis (COMSIA). Med. Chem. Res., 24(4), 1696-1706. doi: 10.1007/s00044-014-1241-4
Goodwin, J. T., Conradi, R. A., Ho, N. F. H. & Burton, P. S. (2001). Physicochemical Determinants of Passive Membrane Permeability:  Role of Solute Hydrogen-Bonding Potential and Volume. J. Med. Chem., 44(22), 3721-3729. doi: 10.1021/jm010253i
Grandvuinet, A. S., Gustavsson, L. & Steffansen, B. (2013). New Insights into the Carrier-Mediated Transport of Estrone-3-sulfate in the Caco-2 Cell Model. Mol. Pharm., 10(9), 3285-3295. doi: 10.1021/mp300618a
Hosey, C. M. & Benet, L. Z. (2015). Predicting the Extent of Metabolism Using in Vitro Permeability Rate Measurements and in Silico Permeability Rate Predictions. Mol. Pharm., 12(5), 1456-1466. doi: 10.1021/mp500783g
Hou, T., Li, Y., Zhang, W. & Wang, J. (2009). Recent Developments of In Silico Predictions of Intestinal Absorption and Oral Bioavailability. Comb. Chem. High Throughput Screen, 12(5), 497-506. doi: 10.2174/138620709788489082
Hou, T., Wang, J., Zhang, W., Wang, W. & Xu, X. (2006). Recent Advances in Computational Prediction of Drug Absorption and Permeability in Drug Discovery. Curr. Med. Chem., 13(22), 2653-2667. doi: 10.2174/092986706778201558
Hou, T. J., Zhang, W., Xia, K., Qiao, X. B. & Xu, X. J. (2004). ADME Evaluation in Drug Discovery. 5. Correlation of Caco-2 Permeation with Simple Molecular Properties. J. Chem. Inf. Comput. Sci., 44(5), 1585-1600. doi: 10.1021/ci049884m
Hubert, M. & Engelen, S. (2004). Robust PCA and classification in biosciences. Bioinformatics, 20(11), 1728-1736. doi: 10.1093/bioinformatics/bth158
Ingels, F., Deferme, S., Destexhe, E., Oth, M., Van den Mooter, G. & Augustijns, P. (2002). Simulated intestinal fluid as transport medium in the Caco-2 cell culture model. Int. J. Pharm., 232(1–2), 183-192. doi: 10.1016/S0378-5173(01)00897-3
Irvine, J. D., Takahashi, L., Lockhart, K., Cheong, J., Tolan, J. W., Selick, H. E. & Grove, J. R. (1999). MDCK (Madin–Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci., 88(1), 28-33. doi: 10.1021/js9803205
Joung, J. Y., Kim, H., Kim, H. M., Ahn, S. K., Nam, K.-Y. & No, K. T. (2012). Prediction Models of P-Glycoprotein Substrates Using Simple 2D and 3D Descriptors by a Recursive Partitioning Approach. [Prediction Models of P-Glycoprotein Substrates Using Simple 2D and 3D Descriptors by a Recursive Partitioning Approach]. Bull. Korean Chem. Soc., 33(4), 1123-1127. doi: 10.5012/BKCS.2012.33.4.1123
Jung, S. J., Choi, S. O., Um, S. Y., Kim, J. I., Choo, H. Y. P., Choi, S. Y. & Chung, S. Y. (2006). Prediction of the permeability of drugs through study on quantitative structure–permeability relationship. J. Pharm. Biomed. Anal., 41(2), 469-475. doi: 10.1016/j.jpba.2005.12.020
Kaliszan, R. (2007). QSRR: Quantitative Structure-(Chromatographic) Retention Relationships. Chem. Rev., 107(7), 3212-3246. doi: 10.1021/cr068412z
Kansy, M., Fischer, H., Kratzat, K., Senner, F., Wagner, B. & Parrilla, I. (2001). High-Throughput Artificial Membrane Permeability Studies in Early Lead Discovery and Development. In B. Testa.H. Van de Waterbeend.G. Folkers & R. Guy (Eds.), Pharmacokinetic Optimization in Drug Research (pp. 447-464). Zurich, Weinheim: Verlag Helvetica Chimica Acta/Wiley/VCH.
Karelson, M., Karelson, G., Tamm, T., Indrek, T., Jänes, J., Tämm, K., . . . Dobcheva, D. (2009). QSAR study of pharmacological permeabilities. Arkivoc, 218-238.
Kecman, V. (2001). Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models: MIT Press.
Kouskoura, M. G., Kachrimanis, K. G. & Markopoulou, C. K. (2014). Modeling the drugs’ passive transfer in the body based on their chromatographic behavior. J. Pharm. Biomed. Anal., 100, 94-102. doi: 10.1016/j.jpba.2014.07.031
Krondahl, E., Orzechowski, A., Ekström, G. & Lennernäs, H. (1997). Rat jejunal permeability and metabolism of μ-selective tetrapeptides in gastrointestinal fluids from humans and rats. Pharm. Res., 14(12), 1780-1785. doi: 10.1023/A:1012144232666
Kulkarni, A., Han, Y. & Hopfinger, A. J. (2002). Predicting Caco-2 Cell Permeation Coefficients of Organic Molecules Using Membrane-Interaction QSAR Analysis. J. Chem. Inf. Comput. Sci., 42(2), 331-342. doi: 10.1021/ci010108d
Kunta, J. R. & Sinko, P. J. (2004). Intestinal Drug Transporters: In Vivo Function and Clinical Importance. Curr. Drug Metab., 5(1), 109-124. doi: 10.2174/1389200043489144
Lazorova, L., Hubatsch, I., Ekegren, J. K., Gising, J., Nakai, D., Zaki, N. M., . . . Artursson, P. (2011). Structural features determining the intestinal epithelial permeability and efflux of novel HIV-1 protease inhibitors. J. Pharm. Sci., 100(9), 3763-3772. doi: 10.1002/jps.22570
Lee, J. B., Zgair, A., Taha, D. A., Zang, X., Kagan, L., Kim, T. H., . . . Gershkovich, P. (2017). Quantitative analysis of lab-to-lab variability in Caco-2 permeability assays. Eur. J. Pharm. Biopharm., 114, 38-42. doi: 10.1016/j.ejpb.2016.12.027
Lee, M.-H., Ta, G. H., Weng, C.-F. & Leong, M. K. (2020). In Silico Prediction of Intestinal Permeability by Hierarchical Support Vector Regression. Int. J. Mol. Sci., 21(10), 3582. doi: 10.3390/ijms21103582
Leong, M. K., Chen, Y.-M., Chen, H.-B. & Chen, P.-H. (2009a). Development of a New Predictive Model for Interactions with Human Cytochrome P450 2A6 Using Pharmacophore Ensemble/Support Vector Machine (PhE/SVM) Approach. Pharm. Res., 26(4), 987-1000. doi: 10.1007/s11095-008-9807-9
Leong, M. K., Chen, Y.-M. & Chen, T.-H. (2009b). Prediction of human cytochrome P450 2B6-substrate interactions using hierarchical support vector regression approach. J. Comput. Chem., 30(12), 1899-1909. doi: 10.1002/jcc.21190
Leong, M. K., Lin, S.-W., Chen, H.-B. & Tsai, F.-Y. (2010). Predicting Mutagenicity of Aromatic Amines by Various Machine Learning Approaches. Toxicol. Sci., 116(2), 498-513. doi: 10.1093/toxsci/kfq159
Leung, S. S. F., Sindhikara, D. & Jacobson, M. P. (2016). Simple Predictive Models of Passive Membrane Permeability Incorporating Size-Dependent Membrane-Water Partition. J. Chem. Inf. Model., 56(5), 924-929. doi: 10.1021/acs.jcim.6b00005
Li, A. P. (2001). Screening for human ADME/Tox drug properties in drug discovery. Drug Discov. Today, 6(7), 357-366. doi: 10.1016/S1359-6446(01)01712-3
Li, D., Chen, L., Li, Y., Tian, S., Sun, H. & Hou, T. (2014). ADMET Evaluation in Drug Discovery. 13. Development of in Silico Prediction Models for P-Glycoprotein Substrates. Mol. Pharm., 11(3), 716-726. doi: 10.1021/mp400450m
Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255-268. doi: 10.2307/2532051
Lin, L. I. K. (1992). Assay Validation Using the Concordance Correlation Coefficient. Biometrics, 48(2), 599-604.
Lingineni, K., Belekar, V., Tangadpalliwar, S. R. & Garg, P. (2017). The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood–brain barrier (BBB) permeability. Mol. Divers., 21(2), 355-365. doi: 10.1007/s11030-016-9715-6
Litman, T., Zeuthen, T., Skovsgaard, T. & Stein, W. D. (1997). Structure-activity relationships of P-glycoprotein interacting drugs: kinetic characterization of their effects on ATPase activity. Biochim. Biophys. Acta-Mol. Basis Dis., 1361(2), 159-168. doi: 10.1016/S0925-4439(97)00026-4
Ma, G. & Cheng, Y. (2006). Predicting Caco-2 Permeability Using Support Vector Machine and Chemistry Development Kit. J. Pharm. Pharm. Sci., 9(2), 210-221.
Malan, S. F., Chetty, D. J. & Du Plessis, J. (2002). Physicochemical properties of drugs and membrane permeability: review article. South African Journal of Science, 98(7-8), 385-391.
Markowska, M., Oberle, R., Juzwin, S., Hsu, C.-P., Gryszkiewicz, M. & Streeter, A. J. (2001). Optimizing Caco-2 cell monolayers to increase throughput in drug intestinal absorption analysis. J. Pharmacol. Toxicol. Methods, 46(1), 51-55. doi: 10.1016/S1056-8719(01)00161-7
Meshali, M. M., Abdel-Aleem, H. M., Sakr, F. M., Nazzal, S., El-Malah, Y. & El-Malah, Y. (2008). In vitro phonophoresis: effect of ultrasound intensity and mode at high frequency on NSAIDs transport across cellulose and rabbit skin membranes. Pharmazie, 63(1), 49-53. doi: 10.1691/ph.2008.7147
Mudie, D. M., Amidon, G. L. & Amidon, G. E. (2010). Physiological Parameters for Oral Delivery and in Vitro Testing. Mol. Pharm., 7(5), 1388-1405. doi: 10.1021/mp100149j
Muehlbacher, M., Spitzer, G. M., Liedl, K. R. & Kornhuber, J. (2011). Qualitative prediction of blood–brain barrier permeability on a large and refined dataset. J. Comput.-Aided Mol. Des., 25(12), 1095-1106. doi: 10.1007/s10822-011-9478-1
Netzeva, T. I., Worth, A. P., Aldenberg, T., Benigni, R., Cronin, M. T. D., Gramatica, P., . . . Yang, C. (2005). Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure-Activity Relationships:The Report and Recommendations of ECVAM Workshop 521,2. ATLA-Altern. Lab. Anim., 33(2), 155-173. doi: 10.1177/026119290503300209
Newby, D. A. (2014). Data mining methods for the prediction of intestinal absorption using QSAR. (Ph.D.), University of Kent. Retrieved from https://kar.kent.ac.uk/47600/
https://kar.kent.ac.uk/47600/1/DNEWBY_Thesis_FINAL_Nov14.pdf
Newstead, S., Drew, D., Cameron, A. D., Postis, V. L. G., Xia, X., Fowler, P. W., . . . Iwata, S. (2011). Crystal structure of a prokaryotic homologue of the mammalian oligopeptide–proton symporters, PepT1 and PepT2. Embo J., 30(2), 417-426. doi: 10.1038/emboj.2010.309
Nordqvist, A., Nilsson, J., Lindmark, T., Eriksson, A., Garberg, P. & Kihlén, M. (2004). A General Model for Prediction of Caco-2 Cell Permeability. QSAR Comb. Sci., 23(5), 303-310. doi: 10.1002/qsar.200330868
Norinder, U. & Österberg, T. (2001). Theoretical calculation and prediction of drug transport processes using simple parameters and partial least squares projections to latent structures (PLS) statistics. The use of electrotopological state indices. J. Pharm. Sci., 90(8), 1076-1085. doi: 10.1002/jps.1061
Norinder, U., Osterberg, T. & Artursson, P. (1999). Theoretical calculation and prediction of intestinal absorption of drugs using Molsurf parametrization and PLS statistics. Eur. J. Pharm. Sci., 8, 49-56.
Nti-Addae, K. W., Guarino, V. R., Dalwadi, G. & Stella, V. J. (2012). Determination of the permeability characteristics of two sulfenamide prodrugs of linezolid across Caco-2 cells. J. Pharm. Sci., 101(9), 3134-3141. doi: 10.1002/jps.23084
Ojha, P. K., Mitra, I., Das, R. N. & Roy, K. (2011). Further exploring rm2 metrics for validation of QSPR models. Chemometrics Intell. Lab. Syst., 107(1), 194-205. doi: 10.1016/j.chemolab.2011.03.011
Paixão, P., Gouveia, L. F. & Morais, J. A. G. (2010). Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks. Eur. J. Pharm. Sci., 41(1), 107-117. doi: 10.1016/j.ejps.2010.05.014
Palm, K., Luthman, K., Ungell, A.-L., Strandlund, G. & Artursson, P. (1996). Correlation of drug absorption with molecular surface properties. J. Pharm. Sci., 85(1), 32-39. doi: 10.1021/js950285r
Penzotti, J. E., Lamb, M. L., Evensen, E. & Grootenhuis, P. D. J. (2002). A Computational Ensemble Pharmacophore Model for Identifying Substrates of P-Glycoprotein. J. Med. Chem., 45(9), 1737-1740. doi: 10.1021/jm0255062
Petri, N. & Lennernäs, H. (2004a). In Vivo Permeability Studies in the Gastrointestinal Tract of Humans. In H. van de Waterbeemd.H. Lennernäs & P. Artursson (Eds.), Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability (Vol. 18, pp. 155-188). Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.
Petri, N., Tannergren, C., Rungstad, D. & Lennernäs, H. (2004b). Transport Characteristics of Fexofenadine in the Caco-2 Cell Model. Pharm. Res., 21(8), 1398-1404. doi: 10.1023/B:PHAM.0000036913.90332.b1
Pham-The, H., Cabrera-Pérez, M. Á., Nam, N.-H., Castillo-Garit, J. A., Rasulev, B., Le-Thi-Thu, H. & Casañola-Martin, G. M. (2018). In Silico Assessment of ADME Properties: Advances in Caco-2 Cell Monolayer Permeability Modeling. Curr. Top. Med. Chem., 18(26), 2209-2229. doi: 10.2174/1568026619666181130140350
Pham-The, H., Garrigues, T., Bermejo, M., González-Álvarez, I., Monteagudo, M. C. & Cabrera-Pérez, M. Á. (2013a). Provisional Classification and in Silico Study of Biopharmaceutical System Based on Caco-2 Cell Permeability and Dose Number. Mol. Pharm., 10 (6), 2445-2461. doi: 10.1021/mp4000585
Pham-The, H., González-Álvarez, I., Bermejo, M., Garrigues, T., Le-Thi-Thu, H. & Cabrera-Pérez, M. Á. (2013b). The Use of Rule-Based and QSPR Approaches in ADME Profiling: A Case Study on Caco-2 Permeability. Mol. Inf., 32(5-6), 459-479. doi: 10.1002/minf.201200166
Pham-The, H., González-Álvarez, I., Bermejo, M., Mangas Sanjuan, V., Centelles, I., Garrigues, T. M. & Cabrera-Pérez, M. Á. (2011). In Silico Prediction of Caco-2 Cell Permeability by a Classification QSAR Approach. Mol. Inf., 30(4), 376-385. doi: 10.1002/minf.201000118
Ponce, Y. M., Pérez, M. A. C., Zaldivar, V. R., Sanz, M. B., Mota, D. S. & Torrens, F. (2005). Prediction of Intestinal Epithelial Transport of Drug in (Caco-2) Cell Culture from Molecular Structure using in silico Approaches During Early Drug Discovery. Internet Electron. J. Mol. Des., 4, 124-150.
Proctor, W. R., Ming, X. & Thakker, D. R. (2010). In Vitro Techniques to Study Drug–Drug Interactions Involving Transport: Caco-2 Model for Study of P-Glycoprotein and Other Transporters. In S. K. Pang.D. A. Rodrigues & M. R. Peter (Eds.), Enzyme- and Transporter-Based Drug-Drug Interactions: Progress and Future Challenges (pp. 257-282). New York, NY: Springer.
Rücker, C., Rücker, G. & Meringer, M. (2007). y-Randomization and Its Variants in QSPR/QSAR. J. Chem Inf. Model., 47(6), 2345-2357. doi: 10.1021/ci700157b
Raevsky, O. A. (2004). Physicochemical Descriptors in Property-Based Drug Design. Mini-Rev. Med. Chem., 4(10), 1041-1052.
Refsgaard, H. H. F., Jensen, B. F., Brockhoff, P. B., Guldbrandt, M. & Christensen, M. S. (2005). In Silico Prediction of Membrane Permeability from Calculated Molecular Parameters. J. Med. Chem., 48(3), 805-811. doi: 10.1021/jm049661n
Rogers, D. (1994). Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comput. Sci., 34(4), 854-866.
Rossi Sebastiano, M., Doak, B. C., Backlund, M., Poongavanam, V., Over, B., Ermondi, G., . . . Kihlberg, J. (2018). Impact of Dynamically Exposed Polarity on Permeability and Solubility of Chameleonic Drugs Beyond the Rule of 5. J. Med. Chem., 61(9), 4189-4202. doi: 10.1021/acs.jmedchem.8b00347
Roy, K., Mitra, I., Kar, S., Ojha, P. K., Das, R. N. & Kabir, H. (2012). Comparative Studies on Some Metrics for External Validation of QSPR Models. J. Chem Inf. Model., 52(2), 396-408. doi: 10.1021/ci200520g
Roy, P. P. & Roy, K. (2008). On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR Comb. Sci., 27(3), 302-313. doi: 10.1002/qsar.200710043
Santos‐Filho, O. A. & Hopfinger, A. J. (2008a). Combined 4D‐Fingerprint and Clustering Based Membrane‐Interaction QSAR Analyses for Constructing Consensus Caco‐2 Cell Permeation Virtual Screens. Journal of Pharmaceutical Sciences, 97(1), 566-583. doi: https://doi.org/10.1002/jps.21086
Santos‐Filho, O. A. & Hopfinger, A. J. (2008b). Combined 4D‐Fingerprint and Clustering Based Membrane‐Interaction QSAR Analyses for Constructing Consensus Caco‐2 Cell Permeation Virtual Screens. J. Pharm. Sci., 97(1), 566-583. doi: 10.1002/jps.21086
Schüürmann, G., Ebert, R.-U., Chen, J., Wang, B. & Kühne, R. (2008). External Validation and Prediction Employing the Predictive Squared Correlation Coefficient — Test Set Activity Mean vs Training Set Activity Mean. J. Chem Inf. Model., 48(11), 2140-2145. doi: 10.1021/ci800253u
Schölkopf, B. & Smola, A. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning) (1st ed.). Cambridge: The MIT Press.
Shinde, R. N., Srikanth, K. & Sobhia, M. E. (2012). Insights into the permeability of drugs and drug-likemolecules from MI-QSAR and HQSAR studies. J. Mol. Model., 18(3), 947-962. doi: 10.1007/s00894-011-1121-5
Skolnik, S., Lin, X., Wang, J., Chen, X.-H., He, T. & Zhang, B. (2010). Towards prediction of in vivo intestinal absorption using a 96-well Caco-2 assay. J. Pharm. Sci., 99(7), 3246-3265. doi: 10.1002/jps.22080
Sobral, M. M. C., Faria, M. A., Cunha, S. C., Miladinovic, B. & Ferreira, I. M. (2019). Transport of mycotoxins across human gastric NCI–N87 and intestinal Caco-2 cell models. Food Chem. Toxicol., 131, 110595. doi: 10.1016/j.fct.2019.110595
Subramanian, G. & Kitchen, D. B. (2006). Computational approaches for modeling human intestinal absorption and permeability. J. Mol. Model., 12(5), 577-589. doi: 10.1007/s00894-005-0065-z
Tantishaiyakul, V. (2001). Prediction of Caco-2 cell permeability using partial least squares multivariate analysis. Pharmazie, 56(5), 407-411.
Tropsha, A., Gramatica, P. & Gombar, V. K. (2003). The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR Comb. Sci., 22(1), 69-77. doi: 10.1002/qsar.200390007
Troutman, M. D. & Thakker, D. R. (2003). Efflux Ratio Cannot Assess P-Glycoprotein-Mediated Attenuation of Absorptive Transport: Asymmetric Effect of P-Glycoprotein on Absorptive and Secretory Transport Across Caco-2 Cell Monolayers. Pharm. Res., 20(8), 1200-1209. doi: 10.1023/a:1025049014674
Uchida, R., Okamoto, H., Ikuta, N., Terao, K. & Hirota, T. (2016). Investigation of Enantioselective Membrane Permeability of α-Lipoic Acid in Caco-2 and MDCKII Cell. Int. J. Mol. Sci., 17(2), 155. doi: 10.3390/ijms17020155
van Breemen, R. B. & Li, Y. (2005). Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol., 1(2), 175-185. doi: 10.1517/17425255.1.2.175
van de Waterbeemd, H. (2007). In Silico Models to Predict Oral Absorption. In B. T. John & J. T. David (Eds.), Comprehensive Medicinal Chemistry II (pp. 669-697). Oxford: Elsevier.
van de Waterbeemd, H., Camenisch, G., Folkers, G. & Raevsky, O. A. (1996). Estimation of Caco-2 Cell Permeability using Calculated Molecular Descriptors. Quant. Struct.-Act. Relat., 15(6), 480-490. doi: 10.1002/qsar.19960150604
Varma, M. V., Ambler, C. M., Ullah, M., Rotter, C. J., Sun, H., Litchfield, J., . . . El-Kattan, A. F. (2010a). Targeting Intestinal Transporters for Optimizing Oral Drug Absorption. Curr. Drug Metab., 11(9), 730-742. doi: 10.2174/138920010794328850
Varma, M. V. S., Obach, R. S., Rotter, C., Miller, H. R., Chang, G., Steyn, S. J., . . . Troutman, M. D. (2010b). Physicochemical Space for Optimum Oral Bioavailability: Contribution of Human Intestinal Absorption and First-Pass Elimination. J. Med. Chem., 53(3), 1098-1108. doi: 10.1021/jm901371v
Varma, M. V. S. & Panchagnula, R. (2005). pH-dependent functional activity of P-glycoprotein in limiting intestinal absorption of protic drugs: Kinetic analysis of quinidine efflux in situ. J. Pharm. Sci., 94(12), 2632-2643. doi: 10.1002/jps.20489
Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W. & Kopple, K. D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem., 45(12), 2615-2623. doi: 10.1021/jm020017n
Volpe, D. A. (2008). Drug Permeability Studies in Regulatory Biowaiver Applications. In C. Ehrhardt & K.-J. Kim (Eds.), Drug Absorption Studies: In Situ, In Vitro and In Silico Models (pp. 665-680). Boston, MA: Springer US.
Volpe, D. A. (2011). Drug-permeability and transporter assays in Caco-2 and MDCK cell lines. Future Med. Chem., 3(16), 2063-2077. doi: 10.4155/fmc.11.149
Volpe, D. A. (2020). Advances in cell-based permeability assays to screen drugs for intestinal absorption. Expert. Opin. Drug Discov., 15(5), 539-549. doi: 10.1080/17460441.2020.1735347
Wang, B., Ma, L.-Y., Wang, J.-Q., Lei, Z.-N., Gupta, P., Zhao, Y.-D., . . . Liu, H.-M. (2018). Discovery of 5-Cyano-6-phenylpyrimidin Derivatives Containing an Acylurea Moiety as Orally Bioavailable Reversal Agents against P-Glycoprotein-Mediated Mutidrug Resistance. J. Med. Chem., 61(14), 5988-6001. doi: 10.1021/acs.jmedchem.8b00335
Wang, N.-N., Dong, J., Deng, Y.-H., Zhu, M.-F., Wen, M., Yao, Z.-J., . . . Cao, D.-S. (2016). ADME Properties Evaluation in Drug Discovery: Prediction of Caco-2 Cell Permeability Using a Combination of NSGA-II and Boosting. J. Chem. Inf. Model., 56(4), 763-773. doi: 10.1021/acs.jcim.5b00642
Ward, S. E. & Beswick, P. (2014). What does the aromatic ring number mean for drug design? Expert. Opin. Drug Discov., 9(9), 995-1003. doi: 10.1517/17460441.2014.932346
Welling, S. H., Clemmensen, L. K. H., Buckley, S. T., Hovgaard, L., Brockhoff, P. B. & Refsgaard, H. H. F. (2015). In silico modelling of permeation enhancement potency in Caco-2 monolayers based on molecular descriptors and random forest. Eur. J. Pharm. Biopharm., 94, 152-159. doi: 10.1016/j.ejpb.2015.05.012
Winiwarter, S., Ridderström, M., Ungell, A. L., Andersson, T. B. & Zamora, I. (2007). Use of Molecular Descriptors for Absorption, Distribution, Metabolism, and Excretion Predictions. In B. T. John & J. T. David (Eds.), Comprehensive Medicinal Chemistry II (pp. 531-554). Oxford: Elsevier.
Wolohan, P. R. N. & Clark, R. D. (2003). Predicting drug pharmacokinetic properties using molecular interaction fields and SIMCA. J. Comput.-Aided Mol. Des., 17(1), 65-76. doi: 10.1023/A:1024582008908
Wu, S., Xu, W., Wang, F.-R. & Yang, X.-W. (2015). Study of the Biotransformation of Tongmai Formula by Human Intestinal Flora and Its Intestinal Permeability across the Caco-2 Cell Monolayer. Molecules, 20(10), 18704. doi: 10.3390/molecules201018704
Xue, Y., Yap, C. W., Sun, L. Z., Cao, Z. W., Wang, J. F. & Chen, Y. Z. (2004). Prediction of P-Glycoprotein Substrates by a Support Vector Machine Approach. J. Chem. Inf. Comput. Sci., 44(4), 1497-1505. doi: 10.1021/ci049971e
Yamashita, F., Fujiwara, S.-i. & Hashida, M. (2002a). The “Latent Membrane Permeability” Concept:  QSPR Analysis of Inter/Intralaboratorically Variable Caco-2 Permeability. J. Chem. Inf. Comput. Sci., 42(2), 408-413. doi: 10.1021/ci010317y
Yamashita, F., Wanchana, S. & Hashida, M. (2002b). Quantitative structure/property relationship analysis of Caco-2 permeability using a genetic algorithm-based partial least squares method. J. Pharm. Sci., 91(10), 2230-2239. doi: 10.1002/jps.10214
Yamashita, S., Furubayashi, T., Kataoka, M., Sakane, T., Sezaki, H. & Tokuda, H. (2000). Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci., 10(3), 195-204. doi: 10.1016/S0928-0987(00)00076-2
Yang, Y., Bai, L., Li, X., Xiong, J., Xu, P., Guo, C. & Xue, M. (2014). Transport of active flavonoids, based on cytotoxicity and lipophilicity: An evaluation using the blood–brain barrier cell and Caco-2 cell models. Toxicol. Vitro, 28(3), 388-396. doi: 10.1016/j.tiv.2013.12.002
Yang, Y., Engkvist, O., Llinàs, A. & Chen, H. (2012). Beyond Size, Ionization State, and Lipophilicity: Influence of Molecular Topology on Absorption, Distribution, Metabolism, Excretion, and Toxicity for Druglike Compounds. J. Med. Chem., 55(8), 3667-3677. doi: 10.1021/jm201548z
Zeng, Z., Shen, Z. L., Zhai, S., Xu, J. L., Liang, H., Shen, Q. & Li, Q. Y. (2017). Transport of curcumin derivatives in Caco-2 cell monolayers. Eur. J. Pharm. Biopharm., 117(Supplement C), 123-131. doi: 10.1016/j.ejpb.2017.04.004
Zhang, X., Liu, T., Fan, X. & Ai, N. (2017). In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation. J. Mol. Graph. Model., 75(Supplement C), 347-354. doi: 10.1016/j.jmgm.2017.05.021
Zhou, L., Lee, K., Thakker, D. R., Boykin, D. W., Tidwell, R. R. & Hall, J. E. (2002). Enhanced Permeability of the Antimicrobial Agent 2,5-Bis(4-Amidinophenyl)Furan Across Caco-2 Cell Monolayers Via Its Methylamidoxime Prodrug. Pharm. Res., 19(11), 1689-1695. doi: 10.1023/a:1020957430400
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用Hierarchical Support Vector Machine方法預測血腦障蔽的穿透能力
2. 利用階層式支持向量回歸法預測人體多藥轉運醣蛋白介導的外排率
3. 使用Hierarchical Support Vector Regression方法預測血腦屏障的滲透表面積乘積
4. 利用階層式支持向量回歸法預測空腸的滲透率
5. 利用Pharmacophore Ensemble/Support Vector Machine方法預測ABCG2抑制劑結合親和力
6. 使用Hierarchical Support Vector Regression發展Quantiative Structure Activity Relationship模型預測芳香族硝基化合物的致突變
7. 使用Support Vector Machine發展 SVM-Pose/SVM-Score Ensemble Docking 應用於預測N-methyl-D-aspartate的生物 活性
8. 利用Pharmacophore Ensemble/Support Vector Machine方法預測Estrogen Receptor Alpha結合親和力
9. 利用不同的MachineLearning的方法去預測血腦障壁的穿透能力
10. 利用不同MachineLearningApproaches預測芳香族胺在沙門氏菌TA100中致癌/致突變的機率
11. 利用PharmacophoreEnsemble/SupportVectorMachineApproach預測人類多重藥物傳送蛋白P-Glycoprotein的抑制活性
12. 利用PharmacophoreEnsemble/SupportVectorMachine方法預測人類PregnaneXReceptor的活性化
13. 利用Hierarchical Support Vector Regression預測正辛醇 - 水分配係數
14. In Silico Prediction of n-Octanol–Water Partition Coefficient by Various Data Fusion Methods
15. 使用Pharmacophore Ensemble/Support Vector Machine (PhE/SVM)模型來預測Breast Cancer Resistance Protein (BCRP/ABCG2)的抑制
 
* *