帳號:guest(3.14.253.118)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉宥岑
論文名稱:磁性奈米粒子修飾核酸適體結合質譜法捕捉與分析抗藥性金黃色葡萄球菌
指導教授:何彥鵬
指導教授(英文):Yen-Peng Ho
口試委員:江政剛
張凱智
口試委員(英文):Cheng-Kang Chiang
Kai-Chih Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610512003
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:96頁
關鍵詞:鐵奈米粒子核酸適體抗藥性細菌
關鍵詞(英文):NanoparticleAptamerMRSA
相關次數:
  • 推薦推薦:2
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
近年來因抗生素的濫用,導致細菌產生了抗藥性的變異,已成
為公共衛生安全的一大危險。本實驗以磁性奈米粒子結合具有高特異
性的核酸適體(Aptamer)捕捉具有抗藥性的細菌,耐甲氧西林金黃
色葡萄球菌(methicillin-resistant S.aureus,MRSA)。本研究之材料具
有易合成,和良好收集之特性,於表面修飾二氧化矽(SiO2)和聚丙
烯酸(PAA),改變磁性奈米粒子上的官能基,修飾上對 MRSA 具有
高特異性的單股 DNA。此檢測方法主要為使用紫外光光譜儀及螢光
儀檢測液體樣品加入磁性奈米粒子前後的吸收值,可以快速地由液體
樣品中篩選出抗藥性細菌,成本也比以往抗體偵測方法低。此材料也
具有高的特異性,相同的細菌濃度之下,用於抗藥性的金黃色葡萄球
菌 60 分鐘的捕捉時間,即有 95%以上的捕捉率;用於非抗藥性的金
黃色葡萄球菌,60 分鐘的捕捉率,卻只有不到 15%的捕捉率;以 0.1M
NaCl / 1% NH4OH 作為洗脫液可將 MNP@Aptamer 捕捉的 MRSA 洗
脫且結合質譜儀鑑定細菌種類,MNP@Aptamer 也可重複使用達數十
次。
In recent years, the abuse of antibiotics has led to bacterial variation in drug resistance, which has become a major risk for public health safety.
The present work applied magnetic nanoparticles modified with highly specific aptamers to the capture of antibiotic-resistant bacteria, methicillin resistant Staphylococcus aureus (MRSA). The affinity probe is easy to synthesize and reusable. After silica and polyacrylic acid was modified on the surface of magnetic nanoparticles, and the highly specific DNA of MRSA was covalently bound to the particles. Antibiotic-resistant bacteria can be quickly captured by the probes. The probe is superior to antibody probes in stability and cost. The 60-minute capture time for MRSA has a capture rate of more than 90% while the capture rate for the antibiotic-susceptible Staphylococcus aureus is less than 15%.
目錄
壹、緒論 1
1、前言 1
2、細菌之抗藥性 2
3、傳統鑑定微生物方法 3
3.1、直接鏡檢計數法(Direct count) 4
3.2、菌落計數法(Colony counting) 5
3.3、濾膜計數法(membrance filter method) 6
3.4、混濁度測試法(tutbidity measurement) 7
4、抗藥性細菌檢測 8
4.1、傳統抗生素敏感性測試(antimicrobial susceptibility test) 8
4.2、聚合酶連鎖反應測定 10
4.3、質譜檢測法 11
4.4、金奈米粒子測定法 12
4.5、核酸適體與氧化石墨烯感測器測定法 12
4.6、上轉換奈米粒子與DNA適體檢測病原菌 13
5、細菌介紹 15
5.1、金黃色葡萄球菌 15
5.2、耐甲氧西林金黃色葡萄球菌 16
6、磁性奈米粒子 19
6.1、磁性奈米粒子之製備 19
6.2、磁性奈米粒子的發展及應用 19
7、適體(Aptamer) 22
7.1、適體(Aptamer)篩選 22
7.2、適體(Aptamer)應用及發展 25
8、質譜儀與細菌之研究 29
9、研究動機 32
貳、研究內容 33
1、儀器與藥品 33
1.1、 儀器 33
1.2、 藥品 33
1.3、儀器參數與條件 34
1.4、資料庫搜尋參數設定 36
2、實驗方法 36
3、實驗步驟 37
3.1、氧化鐵(Fe3O4)奈米粒子合成 37
3.2、合成表面修飾二氧化矽(SiO2)之磁性奈米粒子 37
3.3、合成表面修飾聚丙烯酸(PAA)之磁性奈米粒子 37
3.4、奈米粒子定量 38
3.5、合成表面修飾適體(aptamer)之磁性奈米粒子 38
3.6、細菌樣品製備 40
3.7、核酸適體修飾鐵奈米粒子檢測細菌樣品 40
3.8、核酸適體修飾鐵奈米粒子洗脫細菌樣品 41
3.9、細菌蛋白質萃取與消化 41
參、結果與討論 45
1、磁性奈米粒子修飾 (MNP@SiO2@PAA) 之官能基鑑定 45
2、聚丙烯酸修飾鐵奈米粒子與核酸適體結合優化 46
2.1、聚丙烯酸修飾鐵奈米粒子與核酸適體結合時間優化 46
2.2、聚丙烯修飾鐵奈米粒子與核酸適體結合比例優化 47
3、以FITC染色MRSA 48
4、核酸適體修飾鐵奈米粒子捕捉MRSA優化 49
4.1、MNP@Aptamer捕捉MRSA適體優化、捕捉溫度、時間 49
4.2、MNP@Aptamer 比例優化捕捉MRSA 52
4.3、MNP@Aptamer 捕捉不同濃度MRSA 54
5、MNP@Aptamer 特異性測試 55
5.1、MNP@Aptamer分別捕捉S.aureus、E.coli時間及捕捉率 55
5.2、MNP@Aptamer捕捉分別S.aureus及E.coli不同細菌量測試特異性 56
6、MRSA洗脫於核酸適體鐵奈米粒子 57
6.1、洗脫液優化 57
6.2、洗脫不同濃度MRSA 58
6.3、捕捉MRSA後不同重量MNP@Aptamer洗脫率 59
7、混和菌種測試特異性捕捉 60
8、磁性奈米粒子結合核酸適體使用次數 62
9、LC-MS/MS分析細菌的蛋白質水解產物 64
肆、結論 67
伍、參考文獻 68
陸、附錄 74
1. Page, M.; Y. Tsang, W.; Ahmed, N., Comparison of the mechanisms of reactions of β‐lactams and β‐sultams, including their reactions with some serine enzymes. 2006; Vol. 19, p 446-451.
2. 衛生福利部疾病管制屬, 國內多重抗藥性細菌之基因型變異現況及臨床相 關資料之蒐集與流行病學研究. 2016.
3. Zhou, C.; Hu, B.; Zhang, X.; Huang, S.; Shan, Y.; Ye, X., The value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in identifying clinically relevant bacteria: a comparison with automated microbiology system. Journal of Thoracic Disease 2014, 6 (5), 545-552.
4. Peeters, B.; Herijgers, P.; Beuselinck, K.; Peetermans, W. E.; Herregods, M.-C.; Desmet, S.; Lagrou, K., Comparison of PCR-Electrospray Ionization Mass Spectrometry with 16S rRNA PCR and Amplicon Sequencing for Detection of Bacteria in Excised Heart Valves. Journal of Clinical Microbiology 2016, 54 (11), 2825-2831.
5. Levett, P. N.; Morey, R. E.; Galloway, R. L.; Turner, D. E.; Steigerwalt, A. G.; Mayer, L. W., Detection of pathogenic leptospires by real-time quantitative PCR. Journal of Medical Microbiology 2005, 54 (1), 45-49.
6. Xiao, D.; Zhang, C.; Zhang, H.; Li, X.; Jiang, X.; Zhang, J., A novel approach for differentiating pathogenic and non-pathogenic Leptospira based on molecular fingerprinting. Journal of Proteomics 2015, 119, 1-9.
7. Matsunaga, T.; Okochi, M.; Nakasono, S., Direct Count of Bacteria Using Fluorescent Dyes: Application to Assessment of Electrochemical Disinfection. Analytical Chemistry 1995, 67 (24), 4487-4490.
8. Ferrari, A.; Lombardi, S.; Signoroni, A., Bacterial colony counting with Convolutional Neural Networks in Digital Microbiology Imaging. Pattern Recognition 2017, 61, 629-640.
9. Kiehlbauch, J. A.; Hannett, G. E.; Salfinger, M.; Archinal, W.; Monserrat, C.; Carlyn, C., Use of the National Committee for Clinical Laboratory Standards Guidelines for Disk Diffusion Susceptibility Testing in New York State Laboratories. Journal of Clinical Microbiology 2000, 38 (9), 3341-3348.
10. 衛生福利部疾病管制屬, 感受性測試的原則與方法:紙錠法、最低抑菌濃度 法.
11. Balouiri, M.; Sadiki, M.; Ibnsouda, S. K., Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 2016, 6 (2), 71-79.
12. Liu, Z.; Zhang, J.; Rao, S.; Sun, L.; Zhang, J.; Liu, R.; Zheng, G.; Ma, X.; Hou, S.; Zhuang, X.; Song, X.; Li, Q., Heptaplex PCR melting curve analysis for rapid detection of plasmid-mediated AmpC β-lactamase genes. Journal of Microbiological Methods 2015, 110, 1-6.
13. Liu, Q.; Luo, T.; Li, J.; Mei, J.; Gao, Q., Triplex real-time PCR melting curve analysis for detecting Mycobacterium tuberculosis mutations associated with resistance to second-line drugs in a single reaction. Journal of Antimicrobial Chemotherapy 2013, 68 (5), 1097-1103.
74
14. Huang, Q.; Liu, Z.; Liao, Y.; Chen, X.; Zhang, Y.; Li, Q., Multiplex Fluorescence Melting Curve Analysis for Mutation Detection with Dual-Labeled, Self-Quenched Probes. PLOS ONE 2011, 6 (4), e19206.
15. Barski, P.; Piechowicz, L.; Galiński, J.; Kur, J., Rapid assay for detection of methicillin-resistantStaphylococcus aureususing multiplex PCR. Molecular and Cellular Probes 1996, 10 (6), 471-475.
16. Sogawa, K.; Watanabe, M.; Ishige, T.; Segawa, S.; Miyabe, A.; Murata, S.; Saito, T.; Sanda, A.; Furuhata, K.; Nomura, F., Rapid Discrimination between Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus Using MALDI-TOF Mass Spectrometry. Biocontrol Science 2017, 22 (3), 163-169.
17. Ocsoy, I.; Yusufbeyoglu, S.; Yılmaz, V.; McLamore, E. S.; Ildız, N.; Ülgen, A., DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-Resistant Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces 2017, 159, 16-22. 18. Bai, Y.; Feng, F.; Zhao, L.; Chen, Z.; Wang, H.; Duan, Y., A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. Analyst 2014, 139 (8), 1843-1846.
19. Lu, Z.; Chen, X.; Wang, Y.; Zheng, X.; Li, C. M., Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchimica Acta 2015, 182 (3), 571-578.
20. Xing, X.-J.; Liu, X.-G.; Yue, H.; Luo, Q.-Y.; Tang, H.-W.; Pang, D.-W., Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Biosensors and Bioelectronics 2012, 37 (1), 61-67.
21. Zhu, Y.; Cai, Y.; Xu, L.; Zheng, L.; Wang, L.; Qi, B.; Xu, C., Building An Aptamer/Graphene Oxide FRET Biosensor for One-Step Detection of Bisphenol A. ACS Applied Materials & Interfaces 2015, 7 (14), 7492-7496.
22. Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N., A Graphene Platform for Sensing Biomolecules. Angewandte Chemie International Edition 2009, 48 (26), 4785-4787.
23. Jin, B.; Wang, S.; Lin, M.; Jin, Y.; Zhang, S.; Cui, X.; Gong, Y.; Li, A.; Xu, F.; Lu, T. J., Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosensors and Bioelectronics 2017, 90, 525-533.
24. Wu, S.; Duan, N.; Shi, Z.; Fang, C.; Wang, Z., Simultaneous Aptasensor for Multiplex Pathogenic Bacteria Detection Based on Multicolor Upconversion Nanoparticles Labels. Analytical Chemistry 2014, 86 (6), 3100-3107.
25. https://www.hindawi.com/journals/jpath/2011/601905/cta/, Characterization of Virulence Factors of Staphylococcus aureus: Novel Function of Known Virulence Factors That Are Implicated in Activation of Airway Epithelial Proinflammatory Response.
26. Kaneko, J.; Kamio, Y., Bacterial Two-component and Hetero-heptameric Pore-forming Cytolytic Toxins: Structures, Pore-forming Mechanism, and Organization of the Genes. Bioscience, Biotechnology, and Biochemistry 2004, 68 (5), 981-1003.
27. Foster, T. J., Immune evasion by staphylococci. Nature Reviews Microbiology 2005, 3, 948.
28. 衛生部福利部食品藥物管理署.
29. Faron, M. L.; Buchan, B. W.; Vismara, C.; Lacchini, C.; Bielli, A.; Gesu, G.; Liebregts, T.; van Bree, A.; Jansz, A.; Soucy, G.; Korver, J.; Ledeboer, N. A.,
75Automated Scoring of Chromogenic Media for Detection of Methicillin-Resistant Staphylococcus aureus by Use of WASPLab Image Analysis Software. Journal of Clinical Microbiology 2016, 54 (3), 620.
30. Poojary, N. S.; Ramlal, S.; Urs, R. M.; Sripathy, M. H.; Batra, H. V., Application of monoclonal antibodies generated against Panton-Valentine Leukocidin (PVL-S) toxin for specific identification of community acquired methicillin resistance Staphylococcus aureus. Microbiological Research 2014, 169 (12), 924-930.
31. Banada, P. P.; Chakravorty, S.; Shah, D.; Burday, M.; Mazzella, F. M.; Alland, D., Highly Sensitive Detection of Staphylococcus aureus Directly from Patient Blood. PLOS ONE 2012, 7 (2), e31126.
32. Nijhuis, R. H. T.; van Maarseveen, N. M.; van Hannen, E. J.; van Zwet, A. A.; Mascini, E. M., A Rapid and High-Throughput Screening Approach for Methicillin-Resistant Staphylococcus aureus Based on the Combination of Two Different Real-Time PCR Assays. Journal of Clinical Microbiology 2014, 52 (8), 2861-2867.
33. Okolie, C. E.; Wooldridge, K. G.; Turner, D. P. J.; Cockayne, A.; James, R., Development of a heptaplex PCR assay for identification of Staphylococcus aureus and CoNS with simultaneous detection of virulence and antibiotic resistance genes. BMC Microbiology 2015, 15 (1), 157.
34. Lv, X.; Ge, W.; Li, Q.; Wu, Y.; Jiang, H.; Wang, X., Rapid and Ultrasensitive Electrochemical Detection of Multidrug-Resistant Bacteria Based on Nanostructured Gold Coated ITO Electrode. ACS Applied Materials & Interfaces 2014, 6 (14), 11025-11031.
35. Lafleur, L. K.; Bishop, J. D.; Heiniger, E. K.; Gallagher, R. P.; Wheeler, M. D.; Kauffman, P.; Zhang, X.; Kline, E. C.; Buser, J. R.; Kumar, S.; Byrnes, S. A.; Vermeulen, N. M. J.; Scarr, N. K.; Belousov, Y.; Mahoney, W.; Toley, B. J.; Ladd, P. D.; Lutz, B. R.; Yager, P., A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab on a Chip 2016, 16 (19), 3777-3787.
36. Lee, J. E.; Lee, N.; Kim, H.; Kim, J.; Choi, S. H.; Kim, J. H.; Kim, T.; Song, I. C.; Park, S. P.; Moon, W. K.; Hyeon, T., Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery. Journal of the American Chemical Society 2010, 132 (2), 552-557.
37. Khosravian, P.; Shafiee Ardestani, M.; Khoobi, M.; Ostad, S. N.; Dorkoosh, F. A.; Akbari Javar, H.; Amanlou, M., Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. OncoTargets and therapy 2016, 9, 7315-7330.
38. Nakamura, T.; Sugihara, F.; Matsushita, H.; Yoshioka, Y.; Mizukami, S.; Kikuchi, K., Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chemical Science 2015, 6 (3), 1986-1990.
39. Wang, L.; Yang, Z.; Gao, J.; Xu, K.; Gu, H.; Zhang, B.; Zhang, X.; Xu, B., A Biocompatible Method of Decorporation:  Bisphosphonate-Modified Magnetite Nanoparticles to Remove Uranyl Ions from Blood. Journal of the American Chemical Society 2006, 128 (41), 13358-13359.
40. Koehler, F. M.; Rossier, M.; Waelle, M.; Athanassiou, E. K.; Limbach, L. K.; Grass, R. N.; Gunther, D.; Stark, W. J., Magnetic EDTA: coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water. Chemical Communications 2009, (32), 4862-4864.
76

41. Green, R.; Ellington, A. D.; Szostak, J. W., In vitro genetic analysis of the Tetrahymena self-splicing intron. Nature 1990, 347, 406.
42. Robertson, D. L.; Joyce, G. F., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990, 344, 467.
43. Mendonsa, S. D.; Bowser, M. T., In Vitro Selection of Aptamers with Affinity for Neuropeptide Y Using Capillary Electrophoresis. Journal of the American Chemical Society 2005, 127 (26), 9382-9383. 44. Mendonsa, S. D.; Bowser, M. T., In Vitro Evolution of Functional DNA Using Capillary Electrophoresis. Journal of the American Chemical Society 2004, 126 (1), 20-21.
45. Satterthwaite, A. B.; Willis, F.; Kanchanastit, P.; Fruman, D.; Cantley, L. C.; Helgason, C. D.; Humphries, R. K.; Lowell, C. A.; Simon, M.; Leitges, M.; Tarakhovsky, A.; Tedder, T. F.; Lesche, R.; Wu, H.; Witte, O. N., A sensitized genetic system for the analysis of murine B lymphocyte signal transduction pathways dependent on Bruton's tyrosine kinase. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (12), 6687-6692.
46. Raddatz Marie‐Sophie , L.; Dolf, A.; Endl, E.; Knolle, P.; Famulok, M.; Mayer, G., Enrichment of Cell‐Targeting and Population‐Specific Aptamers by FluorescenceActivated Cell Sorting. Angewandte Chemie International Edition 2008, 47 (28), 5190-5193.
47. Lou, X.; Qian, J.; Xiao, Y.; Viel, L.; Gerdon, A. E.; Lagally, E. T.; Atzberger, P.; Tarasow, T. M.; Heeger, A. J.; Soh, H. T., Micromagnetic selection of aptamers in microfluidic channels. Proceedings of the National Academy of Sciences of the United States of America 2009, 106 (9), 2989-2994.
48. Felix, H.-S.; Irena, C.-M.; Evangelia, T.; Karin, B., Peptide Aptamers: Specific Inhibitors of Protein Function. Current Molecular Medicine 2004, 4 (5), 529-538.
49. Tombelli, S.; Minunni, M.; Mascini, M., Aptamers-based assays for diagnostics, environmental and food analysis. Biomolecular Engineering 2007, 24 (2), 191-200.
50. Bickle, M. B. T.; Dusserre, E.; Moncorgé, O.; Bottin, H.; Colas, P., Selection and characterization of large collections of peptide aptamers through optimized yeast two-hybrid procedures. Nature Protocols 2006, 1, 1066.
51. Turek, D.; Van Simaeys, D.; Johnson, J.; Ocsoy, I.; Tan, W., Molecular recognition of live methicillin-resistant staphylococcus aureus cells using DNA aptamers. World journal of translational medicine 2013, 2 (3), 67-74.
52. Law, J. W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H., Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Frontiers in Microbiology 2014, 5, 770.
53. Kim, Y. S.; Song, M. Y.; Jurng, J.; Kim, B. C., Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell–systematic evolution of ligands by exponential enrichment approach. Analytical Biochemistry 2013, 436 (1), 22-28.
54. Kim, Y. S.; Chung, J.; Song, M. Y.; Jurng, J.; Kim, B. C., Aptamer cocktails: Enhancement of sensing signals compared to single use of aptamers for detection of bacteria. Biosensors and Bioelectronics 2014, 54, 195-198.
55. Suh, S. H.; Dwivedi, H. P.; Choi, S. J.; Jaykus, L.-A., Selection and characterization of DNA aptamers specific for Listeria species. Analytical Biochemistry 2014, 459, 39-45. 77
56. Chang, Y.-C.; Yang, C.-Y.; Sun, R.-L.; Cheng, Y.-F.; Kao, W.-C.; Yang, P.-C., Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Scientific Reports 2013, 3, 1863.
57. Moon, J.; Kim, G.; Park, S. B.; Lim, J.; Mo, C., Comparison of Whole-Cell SELEX Methods for the Identification of Staphylococcus Aureus-Specific DNA Aptamers. Sensors (Basel, Switzerland) 2015, 15 (4), 8884-8897.
58. Duan, N.; Wu, S.; Chen, X.; Huang, Y.; Xia, Y.; Ma, X.; Wang, Z., Selection and Characterization of Aptamers against Salmonella typhimurium Using Whole-Bacterium Systemic Evolution of Ligands by Exponential Enrichment (SELEX). Journal of Agricultural and Food Chemistry 2013, 61 (13), 3229-3234.
59. http://www.abcam.com/primary-antibodies/kd-value-a-quantitive-measurementof-antibody-affinity.
60. Egesten, A.; Frick, I.-M.; Mörgelin, M.; Olin, A. I.; Björck, L., Binding of Albumin Promotes Bacterial Survival at the Epithelial Surface. The Journal of Biological Chemistry 2011, 286 (4), 2469-2476.
61. Chan, P.-H.; Chen, Y.-C., Human Serum Albumin Stabilized Gold Nanoclusters as Selective Luminescent Probes for Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus. Analytical Chemistry 2012, 84 (21), 8952-8956.
62. Kuo, F.-Y.; Lin, W.-L.; Chen, Y.-C., Affinity capture using peptide-functionalized magnetic nanoparticles to target Staphylococcus aureus. Nanoscale 2016, 8 (17), 9217-9225.
63. Wu, S.; Duan, N.; Ma, X.; Xia, Y.; Wang, H.; Wang, Z.; Zhang, Q., Multiplexed Fluorescence Resonance Energy Transfer Aptasensor between Upconversion Nanoparticles and Graphene Oxide for the Simultaneous Determination of Mycotoxins. Analytical Chemistry 2012, 84 (14), 6263-6270.
64. Zuo, P.; Li, X.; Dominguez, D. C.; Ye, B.-C., A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab on a Chip 2013, 13 (19), 3921-3928. 65. Anhalt, J. P.; Fenselau, C., Identification of bacteria using mass spectrometry. Analytical Chemistry 1975, 47 (2), 219-225. 66. Hiraoka, K.; Kudaka, I., Electrospray interface for liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry 1990, 4 (12), 519-526. 67. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T., Protein and polymer analyses up to m/z 100 000 by laser ionization time‐of‐flight mass spectrometry. Rapid Communications in Mass Spectrometry 1988, 2 (8), 151-153.
68. Kelleher, N. L.; Lin, H. Y.; Valaskovic, G. A.; Aaserud, D. J.; Fridriksson, E. K.; McLafferty, F. W., Top Down versus Bottom Up Protein Characterization by Tandem High-Resolution Mass Spectrometry. Journal of the American Chemical Society 1999, 121 (4), 806-812.
69. Eng, J. K.; McCormack, A. L.; Yates, J. R., An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 1994, 5 (11), 976-989.
70. Cain Teresa, C.; Lubman David, M.; Weber Walter, J.; Vertes, A., Differentiation of bacteria using protein profiles from matrix‐assisted laser
78

desorption/ionization time‐of‐flight mass spectrometry. Rapid Communications in Mass Spectrometry 1994, 8 (12), 1026-1030.
71. Lay Jackson, O., MALDI‐TOF mass spectrometry of bacteria*. Mass Spectrometry Reviews 2001, 20 (4), 172-194.
72. Hu, A.; Tsai, P.-J.; Ho, Y.-P., Identification of Microbial Mixtures by Capillary Electrophoresis/Selective Tandem Mass Spectrometry. Analytical Chemistry 2005, 77 (5), 1488-1495.
73. van Veen, S. Q.; Claas, E. C. J.; Kuijper, E. J., High-Throughput Identification of Bacteria and Yeast by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Conventional Medical Microbiology Laboratories. Journal of Clinical Microbiology 2010, 48 (3), 900-907.
74. Kassim, A.; Pflüger, V.; Premji, Z.; Daubenberger, C.; Revathi, G., Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiology 2017, 17, 128.
75. Ziegler, D.; Pothier, J. F.; Ardley, J.; Fossou, R. K.; Pflüger, V.; de Meyer, S.; Vogel, G.; Tonolla, M.; Howieson, J.; Reeve, W.; Perret, X., Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Applied Microbiology and Biotechnology 2015, 99 (13), 5547-5562.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *