帳號:guest(3.135.215.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林奕廷
作者(英文):Yih-Tyng Lin
論文名稱:A. Aza-crown ether functionalized silicon quantum dots as metal ion sensors B. Functionalized MoS2 quantum dots as metal ion sensors C. Theoretical study of Bn clusters in ionic liquids
論文名稱(英文):A. Aza-crown ether functionalized silicon quantum dots as metal ion sensors B. Functionalized MoS2 quantum dots as metal ion sensors C. Theoretical study of Bn clusters in ionic liquids
指導教授:張秀華
指導教授(英文):A. H. H. Chang
口試委員:楊雪慧
梁剛荐
口試委員(英文):Hsueh-Hui Yang
Max K. Leong
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610512004
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:109
關鍵詞:量子點
關鍵詞(英文):quantum dotB3LYPLanL2DZcc-pVTZBoron clusters
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏收藏:0
A. Aza-crown ether functionalized silicon quantum dots as metal ion sensors

The B3LYP/LanL2DZ method was employed to calculate the binding energy between metal ions and aza-crown ether (C12H23O5N, C14H27O6N, and C14H28O5N2). The magnitudes of binding energies are found to correlate with the capability of aza-crown ether functionalized silicon quantum dots used as metal ion (K+, Na+, Mg2+,Ca2+, Sr2+, Ba2+, Mn2+) sensors.

B. Functionalized MoS2 quantum dots as metal ion sensors

B3LYP with LanL2DZ and QZVP were used to study the capability of three functionalized (-COOH, -NH2, and -SH) MoS2 quantum dots to detect Co2+, Cd2+and Pb2+ ion. The binding energy between the ions and MoS2 clusters was investigated to
assess the sensing mechanism.

C. Theoretical study of Bn clusters in ionic liquids

The interactions between Boron clusters (Bn, n=6) and ionic liquid were investigated using the B3LYP/cc-pVTZ level of calculations. The likely structures and their IR and Raman spectra are obtained.
A. Aza-crown ether functionalized silicon quantum dots as metal ion sensors

The B3LYP/LanL2DZ method was employed to calculate the binding energy between metal ions and aza-crown ether (C12H23O5N, C14H27O6N, and C14H28O5N2). The magnitudes of binding energies are found to correlate with the capability of aza-crown ether functionalized silicon quantum dots used as metal ion (K+, Na+, Mg2+,Ca2+, Sr2+, Ba2+, Mn2+) sensors.

B. Functionalized MoS2 quantum dots as metal ion sensors

B3LYP with LanL2DZ and QZVP were used to study the capability of three functionalized (-COOH, -NH2, and -SH) MoS2 quantum dots to detect Co2+, Cd2+and Pb2+ ion. The binding energy between the ions and MoS2 clusters was investigated to
assess the sensing mechanism.

C. Theoretical study of Bn clusters in ionic liquids

The interactions between Boron clusters (Bn, n=6) and ionic liquid were investigated using the B3LYP/cc-pVTZ level of calculations. The likely structures and their IR and Raman spectra are obtained.
Table of Contents
Abstract
Table of Contents I

A. Aza-crown ether functionalized silicon quantum dots as metal ion sensors
1.Introduction 1
2.Theoretical Method 2
3.Result and Discussion 2
4.Conclusion 5
5.Reference 6
Table 1. Binding energy of crown ether and metal ions (C12H23O5N+Mg2+,C14H27O6N+Mn2+, C14H28O5N2+Ca2+) with B3LYP/ LanL2DZ 8
Table 2. Binding energy of crown ether and metal ions with B3LYP/cc-pVTZ 9
Figure 1. Bar chart plot of the fluorescence intensity of SiQDs/CE sensors with metal ions 10
Figure 2. Fluorescence response of (a) SiQDs/aza15C5, (b) SiQDs/aza18C6, and (c) SiQDs/diaza18C6 sensors with diverse metal ions. Concentration of each metal ion for (a) SiQDs/aza15C5 and (c) SiQDs/diaza18C6 system is 5 × 10–5 M; for (b) SiQDs/aza18C6 system is 5 × 10–6 M 10
Figure 3. Binding energy of C12H23O5N+Mg2+, C14H27O6N+Mn2+, C14H28O5N2+Ca2+ calculated by using the B3LYP method 11
Figure 4. Binding geometries presentation
12
Figure 5. Binding energies for C14H28O5N2 in the presence of diverse metal ions, calculated by using the B3LYP/LanL2DZ method 13
Figure 6. Bonding order of C14H28O5N2 with diverse metal ions 13
B. Functionalized MoS2 quantum dots as metal ion sensors
1. Introduction 15
2. Theoretical Method 15
3. Result and Discussion 16
4. Conclusion 22
5. Reference 23

Table 1.Binding energy of B3LYP/LanL2DZ for functionalized MoS2 with metal ions. Boltznmann average in kcal/mol 25
Table 2. Binding energy of B3LYP/QZVP for functionalized MoS2 with metal ions. Boltznmann average in kcal/mol 25
Table 3. Binding energy of B3LYP/LanL2DZ for functionalized MoS2 with metal ions 26
Table 4. Binding energy of B3LYP/QZVP for functionalized MoS2 with metal ions 29
Figure 1. Fluorescence spectra and intensity responses of (a, b) MoS2/COOH, (c, d) MoS2/NH2 and (e, f) MoS2/SH QDs with varying concentrations of Co2+, Cd2+ and Pb2+ ions, respectively. 32
Figure 2. Selectivity plot of (a) MoS2/COOH, (b) MoS2/NH2 and (c) MoS2/SH QDs in the presence of diverse metal ions
32
Figure 3.The B3LYP/LanL2DZ optimized geometry of MoS2+Functional Groups+Metals with binding bond lengths, point groups, charge distribution, and relative energy for each conformer 33
Figure 4. The B3LYP/QZVP optimized geometry of MoS2+Functional Groups+Metals with binding bond lengths, point groups, charge distribution, and relative energy for each conformer 45
C. Theoretical study of Bn clusters in ionic liquids
1. Introduction 57
2. Theoretical Method 58
3. Result 58
4. Reference 66
Table 1. Energy of harmonic and anharmonic frequency for ionic lquids 67
Table 2. Vibration mode description/Frequency/Anharmonic frequency/The ratio
verification of frequency to anharmonic frequency/IR/Raman spectrum 68
Table 3. XYZ coordination of molecules 100
Table 4. Energy of ionic liquid MAT-DCA with B6 cluster and the intensity of IR spectrum 108
Figure 1. The B3LYP/cc-pVTZ optimized geometry of each ionic liquid single particle and B6 cluster 109
Reference

1. Liu, J., F. Erogbogbo, K.-T. Yong, L. Ye, J. Liu, R. Hu, H. Chen, Y. Hu, Y. Yang, J. Yang, I. Roy, N.A. Karker, M.T. Swihart, and P.N. Prasad, Assessing Clinical Prospects of Silicon Quantum Dots: Studies in Mice and Monkeys. ACS Nano, 2013. 7(8): p. 7303-7310.
2. Tu, C.-C., K.-P. Chen, T.-A. Yang, M.-Y. Chou, L.Y. Lin, and Y.-K. Li, Silicon Quantum Dot Nanoparticles with Antifouling Coatings for Immunostaining on Live Cancer Cells. ACS Applied Materials & Interfaces, 2016. 8(22): p. 13714-13723.
3. Shiohara, A., S. Prabakar, A. Faramus, C.Y. Hsu, P.-S. Lai, P. T Northcote, and R. Tilley, Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Vol. 3. 2011. 3364-70.
4. H., W.J., H. Akiyoshi, Y. Kenji, and T.R. D., Water‐Soluble Photoluminescent Silicon Quantum Dots. Angewandte Chemie International Edition, 2005. 44(29): p. 4550-4554.
5. Krakowiak, K.E., J.S. Bradshaw, and D.J. Zamecka-Krakowiak, Synthesis of aza-crown ethers. Chemical Reviews, 1989. 89(4): p. 929-972.
6. Kulatilleke, C.P., S.A. de Silva, and Y. Eliav, A coumarin based fluorescent photoinduced electron transfer cation sensor. Polyhedron, 2006. 25(13): p. 2593-2596.
7. Englich, F.V., T.C. Foo, A.C. Richardson, H. Ebendorff-Heidepriem, C.J. Sumby, and T.M. Monro, Photoinduced Electron Transfer Based Ion Sensing within an Optical Fiber. Sensors (Basel, Switzerland), 2011. 11(10): p. 9560-9572.
8. Becke, A.D., Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 1992. 96(3): p. 2155-2160.
9. Becke, A.D., Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. The Journal of Chemical Physics, 1992. 97(12): p. 9173-9177.
10. Becke, A.D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 1993. 98(7): p. 5648-5652.
11. Hay, P.J. and W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 1985. 82(1): p. 299-310.
12. Frisch, M.J.T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision D.01; Gaussian, Inc.,: Wallingford, CT, 2009.
13. Dhenadhayalan, N., H.-L. Lee, K. Yadav, K.-C. Lin, Y.-T. Lin, and A.H.H. Chang, Silicon Quantum Dot-Based Fluorescence Turn-On Metal Ion Sensors in Live Cells. ACS Applied Materials & Interfaces, 2016. 8(36): p. 23953-23962.

Reference

1. Zhu, C., Z. Zeng, H. Li, F. Li, C. Fan, and H. Zhang, Single-Layer MoS2-Based Nanoprobes for Homogeneous Detection of Biomolecules. Journal of the American Chemical Society, 2013. 135(16): p. 5998-6001.
2. Cao, X., C. Tan, X. Zhang, W. Zhao, and H. Zhang, Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion. Adv Mater, 2016. 28(29): p. 6167-96.
3. Rao, C.N.R., K. Gopalakrishnan, and U. Maitra, Comparative Study of Potential Applications of Graphene, MoS2, and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas. ACS Applied Materials & Interfaces, 2015. 7(15): p. 7809-7832.
4. Ge, J., E.-C. Ou, R.-Q. Yu, and X. Chu, A novel aptameric nanobiosensor based on the self-assembled DNA–MoS2 nanosheet architecture for biomolecule detection. Journal of Materials Chemistry B, 2014. 2(6): p. 625-628.
5. Dolmans, D.E.J.G.J., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nature Reviews Cancer, 2003. 3: p. 380.
6. Chen, X. and A.R. McDonald, Functionalization of Two-Dimensional Transition-Metal Dichalcogenides. Advanced Materials, 2016. 28(27): p. 5738-5746.
7. Cho, K., M. Min, T.-Y. Kim, H. Jeong, J. Pak, J.-K. Kim, J. Jang, S.J. Yun, Y.H. Lee, W.-K. Hong, and T. Lee, Electrical and Optical Characterization of MoS2 with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules. ACS Nano, 2015. 9(8): p. 8044-8053.
8. Knirsch, K.C., N.C. Berner, H.C. Nerl, C.S. Cucinotta, Z. Gholamvand, N. McEvoy, Z. Wang, I. Abramovic, P. Vecera, M. Halik, S. Sanvito, G.S. Duesberg, V. Nicolosi, F. Hauke, A. Hirsch, J.N. Coleman, and C. Backes, Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. ACS Nano, 2015. 9(6): p. 6018-6030.
9. Frisch, M.J., G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian 16 Rev. B.01. 2016: Wallingford, CT.
10. Ta-Wei Lin, N.D., Hsin-Lung Lee, Yih-Tyng Lin, King-Chuen Lin, and A. H. H. Chang, Fluorescence Turn-on Chemosensors Based on Surface-functionalized MoS2 Quantum Dots. submitted.
11. Li, Q., Y. Zhao, C. Ling, S. Yuan, Q. Chen, and J. Wang, Towards a Comprehensive Understanding of the Reaction Mechanisms Between Defective MoS2 and Thiol Molecules. Angewandte Chemie International Edition, 2017. 56(35): p. 10501-10505.
12. Chou, S.S., M. De, J. Kim, S. Byun, C. Dykstra, J. Yu, J. Huang, and V.P. Dravid, Ligand Conjugation of Chemically Exfoliated MoS2. Journal of the American Chemical Society, 2013. 135(12): p. 4584-4587.
13. Xu, B., Y. Su, L. Li, R. Liu, and Y. Lv, Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection. Sensors and Actuators B: Chemical, 2017. 246: p. 380-388.
14. Canton-Vitoria, R., Y. Sayed-Ahmad-Baraza, M. Pelaez-Fernandez, R. Arenal, C. Bittencourt, C.P. Ewels, and N. Tagmatarchis, Functionalization of MoS2 with 1,2-dithiolanes: toward donor-acceptor nanohybrids for energy conversion. npj 2D Materials and Applications, 2017. 1(1): p. 13.

Reference

1. Clark, J.D., Ignition! An Informal History of Liquid Rocket Propellants. 1972, NJ: Rutgers University Press: New Brunswick.
2. Cox, J.D.W., D. D.; Medvedev, V. A., CODATA Key Values for Thermodynamics. 1989, New York: Hemisphere Publishing Corp.
3. Ulas, A., K.-K. Kuo, and C. Gotzmer, Ignition and combustion of boron particles in fluorine-containing environments. Vol. 127. 2001. 1935-1957.
4. Perez, J.P.L., J. Yu, A.J. Sheppard, S.D. Chambreau, G.L. Vaghjiani, and S.L. Anderson, Binding of Alkenes and Ionic Liquids to B–H-Functionalized Boron Nanoparticles: Creation of Particles with Controlled Dispersibility and Minimal Surface Oxidation. ACS Applied Materials & Interfaces, 2015. 7(18): p. 9991-10003.
5. Becke, A.D., Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 1992. 96(3): p. 2155-2160.
6. Becke, A.D., Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. The Journal of Chemical Physics, 1992. 97(12): p. 9173-9177.
7. Becke, A.D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 1993. 98(7): p. 5648-5652.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *