帳號:guest(18.191.215.117)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:吳凱華
作者(英文):Kai-Hua Wu
論文名稱:利用高壓紅外光譜研究質子型離子液體的結構與噻吩之間的作用力
論文名稱(英文):The studies on structures and interaction between protic ionic liquids and thiophene by high pressure infrared spectroscopy
指導教授:張海舟
指導教授(英文):Hai-Chou Chang
口試委員:賴建智
胡安仁
口試委員(英文):Chien-Chih Lai
Anren Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610512006
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:66
關鍵詞:離子液體脫硫高壓紅外光譜
關鍵詞(英文):ionic liquidsdesulfurizationhigh pressure IR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
硫化物在化石燃料中是一個重要的環境議題,硫化物燃燒後會排放硫氧化物到空氣中,造成環境上和健康上的問題,煉油廠使用脫硫的方法是加氫脫硫。近年來,有新的方法來去除燃料中的耐火硫化物,像是微生物脫硫、吸附萃取脫硫、氧化脫硫等,其中以離子液體當作催化劑或萃取劑來進行氧化脫硫。在本篇論文中,利用高壓紅外光譜研究兩種離子液體,N,N-dimethyl(hydroxyethyl)ammonium propionate (DMEOAP) 和N,N-dimethyl(cyanoethyl)ammonium propionate (DMCEAP),結構的變化和thiophene之間的作用力。常壓下的光譜可以看到,DMCEAP和DMEOAP在1578 cm-1和1720 cm-1有吸收峰,分別為COO-和C=O官能基,由吸收強度大小說明兩種離子液體在溶液中主要為分子態和離子態,隨著壓力增加,兩種離子液體的C=O 峰減少且大部分轉變為COO-,說明壓力能夠改變離子液體結構。另一方面,在2900cm-1附近的C-H吸收峰觀察到純離子液體和加入噻吩後的頻率有很大的差異,當壓力增加時,C-H會發生藍位移現象,在低濃度時,噻吩會把陰陽離子切開,當壓力增加,噻吩和陽離子的作用會更穩定;在高濃度時,噻吩會把離子液體包圍住,當壓力增加時,噻吩會傾向於自己堆疊成晶體,而離子液體因壓力擠壓作用力增強,形成團簇離子。
Sulfide is an important environmental issue in fossil fuels. Sulfur oxides emit sulfur oxides into the air, causing environmental and health problems. The refinery uses desulfurization by hydrodesulfurization. In recent years, there have been new methods for removing refractory sulfides in fuels, such as microbial desulfurization, adsorption extraction desulfurization, oxidative desulfurization, etc., in which ionic liquids are used as catalysts or extractants for oxidative desulfurization. In this paper, high-pressure infrared spectroscopy is used to study two ionic liquids, N, N-dimethyl(hydroxyethyl)ammonium propionate (DMEOAP) and N,N-dimethyl(cyanoethyl)ammonium propionate (DMCEAP), structural changes and thiophene The force between them. It can be seen from the spectrum under normal pressure that DMCEAP and DMEOAP have absorption peaks at 1578 cm-1 and 1720 cm-1, respectively, which are COO- and C=O functional groups, and the magnitude of the absorption intensity indicates that the two ionic liquids are mainly in solution. For the molecular state and the ionic state, as the pressure increases, the C=O peaks of the two ionic liquids decrease and most of them become COO-, indicating that the pressure can change the ionic liquid structure. On the other hand, the CH absorption peak near 2900 cm-1 observes a large difference between the pure ionic liquid and the frequency after the addition of thiophene. When the pressure increases, CH undergoes a blue shift phenomenon. At low concentrations, the thiophene will The anion and cation are cleaved. When the pressure is increased, the action of thiophene and cation will be more stable. At high concentration, thiophene will surround the ionic liquid. When the pressure increases, thiophene will tend to stack itself into crystals, and the ionic liquid will be squeezed by pressure. The pressure is increased to form cluster ions.
序論.......................1
一、前言......................1
二、現代燃料脫硫的技術.........................................3
2.1加氫脫硫Hydrodesulfurization (HDS) ...........................3
2.2 生物脫硫Biodesulfurization (BDS) ..................4
2.3 吸附 Adsorption ...........................7
2.4 萃取 Extraction .......................................7
2.5 氧化脫硫 Oxidative desulfurization (ODS) ..................8
三、離子液體 ....................................11
3.1離子液體的結構.......................11
3.2離子液體的結構在化學性質上的影響...........................12
3.3 離子液體的應用................................................13
3.4使用離子液體進行氧化脫硫...................................14
四、研究動機...................................................16
貳、 實驗........................19
一、實驗藥品...........................................19
二、合成方法.....................21
2.1離子液體的合成..........................................21
三、實驗儀器.....................21
3.1紅外光譜儀......................................................21
3.2精密鑽孔機及高速鋼鑽頭...................................22
3.3氟化鈣 (CaF2) .........................................22
3.4 Diamond anvil cell (DAC) ..............................22
3.5鎳鉻合金墊片......................................23
3.6實體顯微鏡...................................23
四、實驗步驟..................................23
4.1常壓實驗...............................................23
4.1.1配置離子液體與噻吩的混合溶液............................23
4.1.2常壓紅外光譜測量............................23
4.2高壓實驗.......................................24
4.2.1製作墊片.............................24
4.2.2高壓紅外光譜儀測量...................................24
4.3壓力的校正............................................25
4.4數據分析...................................27
參、 結果與討論..............................................27
肆、 結論.............................................49
伍、 參考文獻..........................................51
1. Srivastava VC. An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv 2012,2,759
2. Hayyan M., Ibrahim M.H., Hayyan A., AlNashef I.M., Alakrach A.M., Hashim M.A. Facile route for fuel desulfurization using generated superoxide ion in ionic liquids. Ind Eng Chem Res 2015,54,12263
3. Zhang S., Zhang Q., Zhang Z.C. Extractive desulfurization and denitrogenation of fuels using ionic liquids. Ind Eng Chem Res 2004,43,614
4. Saikia B.K., Khound K., Baruah B.P. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids. Energ Convers Manage 2014,81,298
5. Wang B., Zhu J.P., Ma H.Z. Desulfurization from thiophene by SO42-/ZrO2 catalytic oxidation at room temperature and atmospheric pressure. J Hazard Mater 2009, 164,256
6. Manning F.S., Thompson R.E., Thompson R.E. Oilfield processing of petroleum: crude oil. PennWell Corporation 1995
7. Leffler W.L. Petroleum refining: in nontechnical language. PennWell Corporation 2008
8. Matar S., Hatch L.F. Chemistry of petrochemical processes. USA: Elsevier Science, 2001
9. Wauquier J.P. Petroleum refining. Process Flowsheets: Atlas Dist Serv 1995,1
10. Robinson P., Dolbear G. Hydrotreating and hydrocracking: fundamentals. In: Hsu C, Robinson P, editors. Practical advances in petroleum processing. New York: Springer 2006,177
11. Lo W.H., Yang H.Y., Wei G.T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids. Green Chem 2003,5,639
12. Gui J., Liu D., Sun Z., Liu D., Min D., Song B., et al. Deep oxidative desulfurization with task-specific ionic liquids: an experimental and computational study. J Mol Catal A-Chem 2010,331,64
13. He L., Li H., Zhu W., Guo J., Jiang X., Lu J., et al. Deep oxidative desulfurization of fuels using peroxophosphomolybdate catalysts in ionic liquids. Ind Eng Chem Res 2008,47,6890

14. Rogers R.D., Seddon K.R. Ionic liquids–solvents of the future?. Science 2003,302,792
15. McCrary P.D., Rogers R.D. 1-Ethyl-3-methylimidazolium hexafluorophosphate: from ionic liquid prototype to antitype. Chem Commun 2013,49,6011
16. Greaves T. L. , Drummond C. J. Protic Ionic Liquids:Properties and Applications Chem Rev 2008, 108 ,206
17. Li Z. , Li C. P. , Chi Y. S. , Wang A. L. , Zhang Z. D. , Li H. X. , Liu Q. S., Welz-Biermann U. Deep desulfurization of fuels based on an oxidation/extraction process with acidic deep eutectic solvents. Energy Fuels 2012, 26 ,3723
18. Mishra A. K. , Kuila T. , Kim D.-Y. , Kim N. H., Lee, J. H. Protic ionic liquid-functionalized mesoporous silica-based hybrid membranes for proton exchange membrane fuel cells. J Mater Chem 2012, 22, 24366
19. Robinson P., Dolbear G. Hydrotreating and hydrocracking: fundamentals. In: Hsu C, Robinson P, editors. Practical advances in petroleum processing. New York: Springer 2006,177
20. Jantaraksa N., Prasassarakich P., Reubroycharoen P., Hinchiranan N. Cleaner alternative liquid fuels derived from the hydrodesulfurization of waste tire pyrolysis oil. Energ Convers Manage 2015,95,424
21. Babich I.V., Moulijn J.A. Science and technology of novel processes for deep
desulfurization of oil refinery streams: a review. Fuel 2003,82,607
22. Yuan P., Cui C., Han W., Bao X. The preparation of Mo/γ-Al2O3 catalysts with controllable size and morphology via adjusting the metal-support interaction and their hydrodesulfurization performance. Appl Catal A 2016,524,115
23. Misra P., Chitanda J.M., Dalai A.K., Adjaye J. Selective removal of nitrogen compounds from gas oil using functionalized polymeric adsorbents: efficient approach towards improving denitrogenation of petroleum feedstock. Chem Eng J 2016,295,109
24. Speight J.G. The desulfurization of heavy oils and residua. New York: Taylor & Francis 1999
25. Soleimani M., Bassi A., Margaritis A. Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 2007,25,570
26. Nidhi Gupta . P. K. Roychoudhury . J. K. Deb. Biotechnology of desulfurization of diesel:prospects and challenges. Appl Microbiol Biot 2005,66,356
27. Chen T.C., Shen Y.H., Lee W.J., Lin C.C., Wan M.W. An economic analysis of the continuous ultrasound-assisted oxidative desulfurization process applied to oil recovered from waste tires. J Clean Prod 2013,39,129
28. Lee M., Senius J., Grossman M. Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene. Appl Environ Microbiol 1995,61,4362
29. Li Y.G., Gao H.S., Li W.L., Xing J.M., Liu H.Z. In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresource Technol 2009,100,5092
30. Alves L., Paixão S. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation. Bioresource Technol 2011,102,9162
31. Abro R., Abdeltawab A. A., Salem S. Al-Deyab, Yu G., Qazi A.B., Gao S., Chen X. A review of extractive desulfurization of fuel oils using ionic liquids. RSC Adv 2014, 4,35302
32. Boniek D., Figueiredo D., dos Santos A., de Resende Stoianoff M. Biodesulfurization : a mini review about the immediate search for the future technology. Clean Technol Envir 2015,17,29
33. Mjalli F.S., Ahmed O.U., Al-Wahaibi T., Al-Wahaibi Y., AlNashef I.M. Deep oxidative desulfurization of liquid fuels. Rev Chem Eng 2014,30,337
34. Kulkarni P.S., Afonso C.A.M. Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chem 2010,12,1139
35. Tam P.S., Kittrell J.R., Eldridge J.W. Desulfurization of fuel oil by oxidation and extraction. 1. Enhancement of extraction oil yield. Ind Eng Chem Res 1990,29,321
36. Chang H.C., Zhang R.Lin. , Hsu D.T. The effect of pressure on cation–cellulose interactions in cellulose/ionic liquid mixtures. Phys Chem Chem Phys 2015, 17, 27573
37. Earle M.J., Esperanca J.M.S.S., Gilea M.A., Canongia Lopes J.N., LPN Rebelo, Magee J.W., et al. The distillation and volatility of ionic liquids. Nature 2006,439,831
38. Dyson P.J., Geldbach T.J. Metal catalysed reactions in ionic liquids. Dordrecht, The Netherlands: Springer 2006.
39. Leal J. P. , Esperanca J. M. S. S. , Minas da Piedade M. E. , Lopes J. N. C. , Rebelo L. P. N., Seddon K. R. Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate. J Phys Chem A 2007, 111, 6176
40. Ludwig R. A. , J. Phys. Chem. B 2009, 113, 15419
41. Zhu X., Wang Y. , Li H. R., Phys Chem Chem Phys 2011,13, 17445
42. Sun X. F., Liu S. Y., Khan A., Zhao C., Yan C. Y. , Mu T. C., New J Chem 2014, 38, 3449
43. Stoimenovski J., Izgorodina E. I. , MacFarlane D. R., Phys Chem Chem Phys 2010, 12, 10341
44. Nuthakki B., Greaves T. L., Krodkiewska I., Weerawardena A., Burgar M. I. , Mulder R. J. , Drummond C. J. , Aust J Chem ,2007, 60, 21
45. Horikawa M. , Akai N. , Kawai A., Shibuya K. , J. Phys.Chem. A 2014, 118, 3280
46. Lv Y. Q. , Guo Y. , Luo X. Y. , Li H. R. , Sci China Chem 2012, 55, 1688
47. Berg R. W. , Lopes J. N. C. , Ferreira R. , Rebelo L. P. N. , Seddon K. R. , Tomaszowska A. A., J Phys Chem A 2010,114 , 10834
48. Blanchard J. W. , Belieres J.-P. , Alam T. M. , Yarger J. L. , Holland G. P. , J Phys Chem Lett 2011, 2 ,1077
49. Burrell G. L., Burgar I. M., Separovicc F. , Dunlopd N. F., Phys Chem Chem Phys , 2010, 12 , 1571
50. Xie Y., Zhang Y., Lu X., Ji X.. Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids. Appl Energy 2014,136,325
51. Zhang Y., Ji X., Xie Y., Lu X. Screening of conventional ionic liquids for carbon
dioxide capture and separation. Appl Energy 2016,162,1160
52. Gao J., Cao L., Dong H., Zhang X., Zhang S. Ionic liquids tailored amine aqueous
solution for pre-combustion CO2 capture: role of imidazolium-based ionic liquids.
Appl Energy 2015,154,771
53. Li B., DuanY., Luebke D.,Morreale B. Advancesin CO2 capture technology: apatent review. Appl Energy 2013,102,1439
54. Fan M., Huang J., Yang J., Zhang P. Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst. Appl Energy 2013,108,333
55. Mohammad Fauzi A.H., Amin N.A.S., Mat R. Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study. Appl Energy 2014,114,809
56. Silvester D.S., Rogers E.I., Barrosse-Antle L.E., Broder T.L., Compton R.G. The electrochemistry of simple inorganic molecules in room temperature ionic liquids. J Brazil Chem Soc 2008,19,611
57. Eßer J., Wasserscheid P., Jess A. Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem 2004,6,316
58. Lo W.H.,Yang H.Y., Wei G.T. One-pot desulfurization of light oils by chemical
oxidation and solvent extraction with room temperature ionic liquids. Green Chem
2003,5,639
59. Xiong J., Zhu W., Ding W., Yang L., Zhang M., Jiang W., et al. Hydrophobic mesoporous silica-supported heteropolyacid induced by ionic liquid as a high efficiency catalyst for the oxidative desulfurization of fuel. RSC Adv 2015,5,16847
60. Zhang M., Zhu W., Xun S., Xiong J., Ding W., Li M., et al. Enhanced oxidative desulfurization of dibenzothiophene by functional Mo-containing mesoporous
silica. Chem Eng Technol 2015,38,117
61. Zhao D., Sun Z., Li F., Liu R., Shan H. Oxidative desulfurization of thiophene catalyzed by (C4H9)4NBr·2C6H11NO coordinated ionic liquid. Energy Fuels
2008,22,3065
62. Lin F., Wang D., Jiang Z., MaY., Li J., Li R., et al. Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant. Energ Environ Sci 2012,5,6400
63. Wong P. T. T., Moffatt D. J. The uncoupled O-H or O-D stretch in water as an internal pressure gauge for high-pressure infrared spectroscopy of aqueous systems. Appl Spectrosc 1987,41,1070
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *