帳號:guest(18.119.125.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:蔡宗諭
作者(英文):Tsai-Tsung Yu
論文名稱:在高壓環境下,探討澱粉溶於離子液體 的糊化現象於紅外線吸收光譜之變化
論文名稱(英文):Using high pressure infrared spectroscopy to study the dissolution of starch in ionic liquid and the gelatinization of starch
指導教授:張海舟
指導教授(英文):Hai-Chou Chang
口試委員:胡安仁
賴建智
口試委員(英文):An-Ren Hu
Chien-Chih Lai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610512007
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:64
關鍵詞:澱粉高壓離子液體糊化紅外線吸收光譜
關鍵詞(英文):High pressureInfrared spectroscopyIonic liquidStarchGelatinization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏收藏:0
在本次研究中主要研究並探討離子液體
(1-butyl-3-methylimidazolium acetate ([Bmim][OAc])) 與澱粉之間的作
用關係,利用傅立葉紅外光譜儀 (FTIR) 以及高壓金剛石砧座 (DAC , Diamond Anvil Cell) 輔助製造一高壓環境,進而觀察在高壓環境下其作用與變化。
在壓力的誘導下,澱粉的糊化現象便會較易發生,我們可以透過DAC(Diamond Anvil Cell) 去製造一高淨水壓力加壓於有興趣的樣品上,如澱粉與水的混和液或澱粉與離子液體的混合液。將其置於傅立葉紅外光譜儀 (Fourier-Transform Infrared Spectroscopy , FTIR) 中進行觀測,而光譜的改變是由於澱粉顆粒在 HHP 的誘導下,其構像的改變、糊化的發生或產生了溶劑化的現象。
本研究中當壓力改變的同時,[Bmim][OAc]此離子液體其中的 C2-H以及
C4,5-H Stretching 會隨著壓力升高,在FTIR的光譜圖訊號位移增加,產生藍位移的現象,其中 C 2 -H Stretching 尤為明顯,而趨勢先是產生急遽的藍位移現象後又趨於平緩,我們推測為在壓力的輔助下可以使澱粉集團更容易地擠進離子液體的結構中,與離子液體中的形成較佳作用力,使澱粉內 OH 基能和離子液體中的 imidazolium 陽離子環能夠產生良好的氫鍵作用力,而當飽和時,位移變化便不再明顯。
In this study, I mainly studied and explored ionic liquids
(1-butyl-3-methylimidazolium acetate ([Bmim] [OAc])) and starch
Using the relationship, Fourier transform infrared spectroscopy (FTIR) and high-pressure diamond anvil cells (DAC) were used to assist in the fabrication of a high-pressure environment and to observe the effects and changes under high-pressure environment.
  Starch gelatinization is more likely to occur under pressure, and we can create a high water pressure pressure on a sample of interest through DAC (Diamond Anvil Cell), such as starch and water or starch and starch Ionic liquid mixture. This was observed in a Fourier-Transform Infrared Spectroscopy (FTIR), and the change of the spectrum was due to the conformational change of the starch granules induced by HHP, the occurrence of gelatinization or the formation of solvated phenomenon.
  In the present study, when the pressure changes, [Bmim] [OAc] C2-H in the ionic liquid and
C4,5-H Stretching will increase with increasing pressure, and the displacement of the signal in the FTIR spectrum will increase, resulting in a blue shift. Especially, C 2 -H Stretching is more obvious, and the tendency is that the rapid blue shift occurs first and then tends to We hypothesize that starch can be more easily squeezed into the ionic liquid structure with the aid of pressure, forming a stronger interaction with the ionic liquid, enabling the OH groups in the starch to react with the imidazolium cationic ring in the ionic liquid Produce a good hydrogen bond force, and when saturated, the displacement change is no longer obvious.
壹、序論 ................................................ 1
1、 研究動機 ...................................... 2
1.1、離子液體 ...................................... 2
1.1.1 離子液體簡介 ................................ 2
1.1.2 離子液體溶解生物聚合物之選擇性 .............. 4
1.1.3離子液體與傳統溶劑相比之溶解生物聚合物的能力 7
1.1.4 離子液體的未來展望 ......................... 10
1.2、高靜態壓力與澱粉 ............................. 11
1.2.1 高靜態壓力簡介 ............................. 11
1.2.2 澱粉的結構和其組成 ......................... 13
1.2.3 澱粉的化學結構 ............................. 13
1.2.4 澱粉的層狀結構 ............................. 14
1.2.5 澱粉的晶格性質 ............................. 15
1.2.6 澱粉的糊化現象 ............................. 16
1.3、高靜態壓力下的澱粉懸浮液 ..................... 16
1.3.1 高靜態壓力下影響澱粉懸浮液的因素 ........... 16
1.3.2 高靜態壓力下澱粉的糊化機制 ................. 17
1.4、高靜態壓力應用於澱粉之未來的應用方向 .......... 18
貳、實驗 ............................................... 21
2、實驗藥品與器材 ................................... 21
2.1、 實驗藥品 ..................................... 21
2.2、 實驗儀器及工具 ............................... 24
2.3、 壓力校正方法 ................................. 30
2.4、 實驗步驟 ..................................... 31
2.4.1、藥品配置 ................................... 31
2.4.2、墊片的製作 ................................. 32
2.4.3、使用 FTIR 進行常壓光譜的研究 ................. 32
2.4.4、除水天秤的使用 ............................. 32
2.4.5、使用 FTIR 進行高壓光譜的研究 ................. 32
參、結果與討論 ......................................... 35
3.1、 常壓 ......................................... 35
3.2、 高壓 ......................................... 42
肆、結論 ............................................... 59
伍、參考資料 ........................................ 60-64
1. H. Mahmood, M. Moniruzzaman, S. Yusup, and T. Welton
Green Chem. 2017, 17, 2051-2075
2. Yang, Z., Chaib, S., Gu, Q., and Hemar, Y., Food Hydrocolloids, 2017 , 68, 164–177.
3. Zhang, B., Chen, L., Xie, F., Li, X., Truss, R. W.,and Halley, P. J. Physical Chemistry Chemical Physics (PCCP) , 2015 , 17(21),
13860~138714.
4. Zhang, B., Xie, F., Shamshina, J. L., Rogers, R. D., McNally, T.and
Halley, P. J. Acs Sustainable Chemistry & Engineering, 2017, 5(5),3737–3741.
5. J. L. Anderson, J. Ding, T. Welton and D. W. Armstrong, Journal of the American Chemical Society.(J. AM Chem. Soc.) , 2002, 124, 14247–14254.
6. T. Welton, Green Chem., 2011, 13, 225–225.
7. M. Kosmulski, J. Gustafsson and J. B. Rosenholm,Thermochim. Acta,
2004, 412,47–53.
8. P. Verdía, A. Brandt, J. P. Hallett, M. J. Ray and T. Welton,Green
Chem., 2014, 16, 1617–1627.
9. M. Freemantle, Chem. Eng. News, 1998, 76,32–37.
10. V. I. Pârvulescu and C. Hardacre, Chem. Rev., 2007, 107, 2615–2665.
11. T. Welton, Chem. Rev., 1999, 99, 2071–2084.
12. T. Welton, Coord. Chem. Rev., 2004, 248, 2459–2477.
13. A. E. Visser, R. P. Swatloski, S. T. Griffin, D. H. Hartman and R. D. Rogers, Sep. Sci. Technol., 2001, 36, 785–804.
14. M. S. Rajabi, M. Moniruzzaman, H. Mahmood,M. Sivapragasam and
M. A. Bustam, J. Mol. Liq., 2017,227,15–20.
15. Y. Zhou, Curr. Nanosci., 2005, 1,35–42.
16. M. Antonietti, D. Kuang, B. Smarsly and Y. Zhou, Angew. Chem., Int.
Ed., 2004, 43, 4988–4992.
17. J. L. Anderson and D. W. Armstrong, Anal. Chem., 2005, 77, 6453–
6462.
18. F. van Rantwijk and R. A. Sheldon, Chem. Rev., 2007, 107, 2757–
2785.
19. M. Moniruzzaman, K. Ino, N. Kamiya and M. Goto, Org. Biomol.
Chem., 2012, 10, 7707–7713.
20. W. L. Houghand R. D. Rogers, Bull. Chem. Soc. Jpn., 2007, 80,
2262–2269.
21. M. Moniruzzaman and M. Goto, J. Chem. Eng. Jpn., 2011, 44, 370–
381.
22. R. P. Swatloski, S. K. Spear, J. D. Holbrey andR. D. Rogers, J. Am.
Chem. Soc., 2002, 124, 4974–4975.
23. H. Wang, G. Gurau and R. D. Rogers, Chem. Soc. Rev., 2012, 41,
1519–1537.
24. A. Brandt, J. Gräsvik, J. P. Hallett and T. Welton, Green Chem., 2013, 15, 550–583.
25. R. D. Rogers and K. R. Seddon, Science, 2003, 302, 792–793.
26. P. Mäki-Arvela, I. Anugwom, P. Virtanen, R. Sjöholm and J.-P.
Mikkola, Ind. Crops Prod., 2010, 32, 175–201.
27. S. Lems, H. Van der Kooi and J. de Swaan Arons, Green Chem., 2002,
4, 308–313.
28. P. Styring, Green Chem., 2009, 11, 1217–1221.
29. C. Chatterjee, F. Pong and A. Sen, Green Chem., 2015, 17, 40–71.
30. H. Khoo, W. Ee and V. Isoni, Green Chem., 2016, 18, 1912–1922.
31. H. Mahmood, M. Moniruzzaman, S. Yusup and H. M.Akil, Chem.
Eng. Trans., 2015, 45, 709–714.
32. C. Vila, A. Campos, C. Cristovao, A. Cunha, V. Santos and J.Parajó,
Compos. Sci. Technol., 2008, 68, 944–952.
33. M. Abe, K. Kuroda and H. Ohno, ACS Sustainable Chem. Eng., 2015,
3, 1771–1776.
34. M. H. Zamri, H. M. Akil, A. A. Bakar, Z. A. M. Ishak and L. W.
Cheng, J. Compos. Mater., 2011, 46,51–61.
35. M. Moniruzzaman and T. Ono, Bioresour. Technol., 2013, 127, 132–
137.
36. B. Lu, A. Xu and J. Wang, Green Chem., 2014, 16, 1326–1335.
37. S. Zhang, N. Sun, X. He, X. Lu and X. Zhang, J. Phys. Chem. Ref.
Data, 2006, 35, 1475–1517.
38. Q. Dong, C. D. Muzny, A. Kazakov, V. Diky, J. W. Magee, J. A.
Widegren, R. D. Chirico, K. N. Marsh and M.Frenkel, J. Chem. Eng. Data, 2007, 52, 1151–1159.
39. S. Aparicio, M. Atilhan and F. Karadas, Ind. Eng. Chem. Res., 2010,
49, 9580–9595.
40. P. A. Hunt, I. R. Gould and B. Kirchner, Aust. J. Chem., 2007, 60,9–14.
41. I. Skarmoutsos, D. Dellis, R. P. Matthews, T. Welton and P. A.Hunt, J.
Phys. Chem. B, 2012, 116, 4921–4933.
42. H. Passos, M. G. Freire and J. A. Coutinho, Green Chem., 2014, 16,
4786–4815.
43. M. Moniruzzaman and T. Ono, Biochem. Eng. J., 2012, 60, 156–160.
44. L. Wu, S.-H. Lee and T. Endo, Bioresour. Technol., 2013, 140,90–96.
45. L. Cammarata, S. Kazarian, P. Salter and T. Welton, Phys. Chem.,
2001, 3, 5192–5200.
46. Y. Pu, N. Jiang and A. J. Ragauskas, J. Wood Chem. Technol., 2007, 27,23–33.
47. N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rodríguez and R. D.
Rogers, Green Chem., 2009, 11, 646–655.
48. W. Lan, C.-F. Liu andR.-C. Sun, J. Agric. Food Chem., 2011, 59,
8691–8701.
49. Y. Fukaya, K. Hayashi, M. Wada and H. Ohno, Green Chem., 2008,
10,44–46.
50. M. Guo, Q. Gu, P. Chen, L. Zhao and H. Liang, J. Polym. Mater.,
2015, 32, 31.
51. H. Mahmood, M. Moniruzzaman, S. Yusup and H. M.Akil, J. Cleaner
Prod., 2016, 126, 677–685.
52. F. Ibrahim, M. Moniruzzaman, S. Yusup and Y. Uemura, J. Mol. Liq.,
2015, 211, 370–372.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *