帳號:guest(3.144.117.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:周子榮
作者(英文):Tzu-Jung Chou
論文名稱:Si + 1,3-butadiene 的反應動力學
論文名稱(英文):Reaction dynamics of Si (3P) + 1,3-Butadiene (CH2CHCHCH2)
指導教授:張秀華
指導教授(英文):Hsiu-Hwa Chang
口試委員:梁剛荐
楊雪慧
口試委員(英文):Max-K Leong
Hsueh-Hui Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610512008
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:144
關鍵詞:丁二烯反應動力學
關鍵詞(英文):reactiondynamicsSi1,3-butadiene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
Reaction dynamics of ground-state atomic silicon (Si; 3P) with singlet1,3-butadiene(C4H6) under single-collision conditions are studied theoretically. Electronic structure calculations suggest the formation of singlet SiC4H4 isomers along with molecule hydrogen via singlet SiC4H6 collision complexes, which then proceed through intersystem crossing from triplet to singlet potential energy surface. All possible reaction products are either cyclic or linear structure. The complexes, intermediates, transition states, and elimination products are optimized at the level of B3LYP/cc-pVTZ. Furthermore, the energies are calculated by CCSD(T)/pVTZ, CCSD(T)/pVDZ, and CCSD(T)/pVQZ, which are extrapolated to complot basis set limit, CCSD(T)/CBS with zero-point energy corrections from B3YLP/cc-pVTZ level.
Last, the most probable pathways can be predicted by calculating RRKM rate constants.
Abstract
Contents………………………………………………………………………………I

Reaction dynamics of Si (3P) + 1,3-Butadiene (CH2CHCHCH2)
I. Introduction………………………………………………………………………1
II. Theoretical methods……………………………………………………………5
1. Ab initio electronic structure calculations………………………………5
2. RRKM rate constants calculations ……5
3. CBS(Complete Basis Set)………………………………………………6
4. Branching ratios calculations & Concentration evaluation with time…6
5. Reaction conical intersection……………………………………………7
6. Most probable path scheme………………………………………………7
III. Results and Discussion……………………………………………………………9
1. Single collision condition complex triplet & singlet c1……9
2. The reaction pathways……………………………………………9
3. The most probable pathways of 1c1……………………………………21
4. H2 molecule elimination products…………………………………………………22
5. Reaction mechanism of 1c1……………………………………………23
6. Concentration versus time………………………………………………23
7. IRC (Intrinsic Reaction Coordinate)……………………………………24
8. Tables and Figures………………………………………………………24
9. Comparison with experiment……………………………………………24
IV. Conclusions………………………………………………………………………27
V. References……………………………………………………………………29
Table 1. Si+1,3-butadiene energy with cc-pVTZ basis set………………33
Table 2. The RRKM rate constants………………………………………49
Table 3. Relative dissociate yields of the reactant………………………………57
Figure 1. The reaction pathway of 1c1……………………………………………58
Figure 2. The reaction pathway of 1c16……………………………………………59
Figure 3. The reaction pathway of 1i7'……………60
Figure 4. The reaction pathway of 1i31…………………………………………61
Figure 5. The reaction pathway of 1i7…………………………………………62
Figure 6. The reaction pathway of 1i6……………………………………………63
Figure 7. The reaction pathway of 1i19……………………………………………64
Figure 8. The reaction pathway of 1i39………………65
Figure 9. The reaction pathway of 1i41………………………………………66
Figure 10. The reaction pathway of 1i66……………………………………67
Figure 11. The reaction pathway of 1i1………………………………………68
Figure 12. The reaction pathway of 1i18……………………………………69
Figure 13. The most probable pathway of 1c1…………………………………70
Figure 14. The optimized geometries of the reactant and complexes…71
Figure 15. The optimized geometries of the intermediates……………………72
Figure 16. The optimized geometries of the variational transition state………86
Figure 17. The optimized geometries of the transition state……………87
Figure 18. The optimized geometries of the products…………………109
Figure 19. The reaction mechanism………………………………114
Figure 20. The concentration versus time……………………………………114
Figure 21. The IRC paths of each channel…………………………………119
Scheme 1&2. ………………………………………………………………………162
(1)Langmuir, I. “The Arrangement of Electrons in Atoms and Molecules.” J. Am. Chem. Soc. 1919, 41, 868−934.
(2)Langmuir, I. “Isomorphism, Isosterism and Covalence.” J. Am. Chem. Soc. 1919, 41, 1543−1559.
(3)Y. Apeloig, M. Karni, “Theoretical Aspects and Quantum Mechanical Calculations of Silaaromatic Compounds”, Wiley, New York, 1998.
(4)M. Kaftory, M. Kapon, M. Botoshansky, “The Structural Chemistry of Organosilicon Compounds”, Vol. 2, Wiley, New York, 1998.
(5)Chen, Y.; Jonas, D. M.; Kinsey, J.; Field, R. “High Resolution Spectroscopic Detection of Acetylene−Vinylidene Isomerization by Spectral Cross Correlation.” J. Chem. Phys. 1989, 91, 3976−3987.
(6)Adande, G. R., Woolf, N. J., & Ziurys, L. M., 2013, AsBio, 13, 439.
(7)Kaftory, M.; Kapon, M.; Botoshansky, M. “The Structural Chemsitry of Organosilicon Compounds.” In The Chemistry of Organic Silicon Compounds; John Wiley & Sons, Inc.: New York, 1998; pp 181-265.
(8)Corey, J. Y. Historical Overview and Comparison of Silicon with Carbon. In
Organic Silicon Compounds; John Wiley & Sons, Ltd.: New York, 1989; pp 1– 56.
(9)Sheldrick, W. S. Structural Chemistry of Organic Silicon Compounds. In Organic Silicon Compounds; John Wiley & Sons, Inc.: New York, 1989; pp 227– 303.
(10)MacKay, D.; Charnley, S. The Silicon Chemistry of IRC+ 10° 216 Mon. Not. R. Astron. Soc. 1999, 302, 793– 800 DOI: 10.1046/j.1365-8711.1999.02175.
(11)Park, W. K.; Park, J.; Park, S. C.; Braams, B. J.; Chen, C.; Bowman, J. M. Quasiclassical Trajectory Calculations of the Reaction C + C2H2 → I-C3H, cC3H + H, C3 + H2 using Full-dimensional Triplet and Singlet Potential Energy Surfaces J. Chem. Phys. 2006, 125, 081101 DOI: 10.1063/1.2333487.
(12)Parker, D. S.; Wilson, A. V.; Kaiser, R. I.; Mayhall, N. J.; Head-Gordon, M.; Tielens, A. G. On the Formation of Silacyclopropenylidene (c-SiC2H2) and its Role in the Organosilicon Chemistry in the Interstellar Medium Astrophys. J. 2013, 770, 33 DOI: 10.1088/0004-637X/770/1/33.
(13)Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. “Ab Initio Molecular Orbital Theory”; Wiley Press: New York, 1986.
(14)Hohenberg, P,; Kohn, W. “Inhomogeneous Electron Gas.” Phys. Rev. 1964, 136, B864-B872.
(15)Kohn, W.; Sham, L. J. “Self-Consistent Equations Including Exchange and Correlation Effects.” Phys. Rev. 1965, 140, A1133-A1138.
(16)Becke, A. D. “Density Functional Thermochemistry. III. The Role of Exact Exchange.” J. Chem. Phys. 1993, 98, 5648-5652.
(17)Lee, C.; Yang, W.; Parr, R. G. “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density.” Phys. Rev. B 1988, 37, 785-789.
(18)Dunning, Jr., T. H. “Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen.” J. Chem. Phys. 1989, 90, 1007-1023.
(19)Dunning, Jr., T. H. “Gaussian Basis Sets for Use in Molecular Calculations. I. Contraction of(9s5p) Atomic Basis Sets for the First-Row Atoms.” J. Chem. Phys. 1970, 53, 2823-2833.
(20)Dunning, Jr., T. H. “Gaussian Basis Sets for Use in Molecular Calculations. III. Concentration of (10s6p) Atomic Basis Sets for the First-Row Atoms.” J. Chem. Phys. 1971, 55, 716-723.
(21)Huzinaga, S. “Gaussian-Type Functions for Polyatomic Systems.” I. J. Chem. Phys. 1965, 42, 1293-1302.
(22)(a) A. D. Bechk, J. Chem. Phys. 98, 5648(1993); (b) 96, 2155(1992); (c) 97,9173(1992); (d) C. Lee, W. Yang, and R. G. Parr, Phys, Rev. B 37, 785(1988).
(23)George D. Purvis, Rodney J. Bartlett, “A Full Coupled-Cluster Singles and Doubles Model-The Inclusion of Disconnected Triplets.” J. Chem. Phys. 76, 1910(1982).
(24)R. S. Zhu, M. C. Lin, “CH3NO2 Decomposition/Isomerization Mechanism and Product Branching Ratios: an Ab Initio Chemical Kinetic Study.” Chemical Physics Letters 478(2009) 11-16.
(25)R. S. Zhu, M. C. Lin, “CH3NO2 Decomposition/Isomerization Mechanism and Product Branching Ratios: an Ab Initio Chemical Kinetic Study.” Chemical Physics Letters 478(2009) 11-16.
(26)Gonzalez, C.; Schlegal, H. B. “An Improved Algorithm for Reaction Path Following.” J. Chem. Phys. 1989, 90, 2154-2161.
(27)Gonzalez, C.; Schlegal, H. B. “Reaction Path Following in Mass-Weighted Internal Coordinates.” J. Chem. Phys. 1990, 94, 5523-5527.
(28)M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, “Gaussian 09, Revision A.02, Gaussian, Inc.” Wallingford CT, (2016).
(29)A. M. Thomas, B. B. Dangi, Tao Yang, R. I. Kaiser, A. H .H. Chang, Lin Lin, T. J. Chou. “Are Nonadiabatic Reaction Dynamics the Key to Novel Organosilicon Molecules? The Silicon (Si(3P))–Dimethylacetylene (C4H6(X1A1g)) System as a Case Study” J. Chem. Phys. Lett., 2018, 9 (12), pp 3340-3347.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *