帳號:guest(3.139.70.101)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:連士賢
作者(英文):Shih-Sian Lian
論文名稱:白細胞介素6與化學合成硫酸肝素的鍵結研究
指導教授:錢嘉琳
指導教授(英文):Chia-Lin Chyan
口試委員:彭國証
胡安仁
口試委員(英文):Kou-Cheng Peng
An-ren Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610512012
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:29
關鍵詞:白細胞介素6化學合成硫酸肝素
關鍵詞(英文):IL-6HeparinNMRinterleukin 6
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
白細胞介素6(Interleukin-6;IL-6)是細胞因子的一種,其在人體中主要藉由經典信號傳遞以及反式信號傳遞引發一系列生理反應,廣泛的功能使IL-6無論在抵抗細菌、病毒感染或是在腫瘤中促進腫瘤生成、以及在各種炎症或發炎反應中都扮演重要的角色,尤其反式信號傳遞更被認為是促進腫瘤以及各種自身免疫性炎症病情發展的主因。在之前已有研究報導發現IL-6/sIL-6R的二聚體與gp130之間的鍵結能被肝素抑制,且IL-6與IL-6R之間的結合也能被肝素部分抑制。為了從結構上瞭解IL-6與醣類之間的作用,我們利用圓二色吸收光譜及核磁共振光譜探討IL-6與化學合成硫酸肝素(HS8)之間的作用。並發現IL-6與HS8鍵結時並不會影響IL-6的二級結構,而IL-6主練循序判定完成率為15NH:92%;15N:92%;Cα:92%;Cβ:68%;CO:80%,並初步發現可能會與HS8發生鍵結的正電胺基酸。
Interleukin-6 (IL-6), a member in cytokine family, plays an important role in cell signaling. It plays mainfold function in the processes of bacterial infection resistance, tumor growth, and in various inflammatory diseases. IL-6 initiates these physiological reactions through classical signaling and trans-signaling pathway in human body. Especially, the trans-signaling pathway is considered the main cause in promoting tumors growth and the developing autoimmune inflammatory diseases. Trans-signaling pathway is triggered by the binding of IL-6 to soluble IL-6 receptor (sIL-6R); the IL6/sIL-6R complex then activates the phosphorylation of gp130, and relays the signal to the following members in the cascade. Various inhibitors that regulate the trans-signaling pathway by inhibiting the activation process of gp130 were found. Among these inhibitors, heparin molecules were found to inhibit the interaction of IL-6/sIL-6R complex and gp130. In addition, heparin molecules can partially inhibit the binding between IL-6 and IL-6R. In order to further understand the inhibition process, we used circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy to study the interaction of IL-6 with a model heparin molecule, a chemically synthetic heparin sulfate octasaccharide (HS8). We found that the binding of HS8 onto IL-6 will not change the secondary structure percentage of IL-6.The completeness of backbone assignments of IL-6 is 92%(NH, N, Cα), 68% (Cβ) , 80%(CO).The possible HS binding surface, including R31, R41, K42, R180 and R183 residues is located on same side of IL-6.
一、文獻探討.......1
1.1 白細胞介素6(IL-6)......1
1.2 醣胺聚醣 (Glycosaminoglycan;GAGs).....4
1.3 蛋白質與硫酸肝素的作用.....6
1.4 研究目的.....8
二、實驗材料與方法.....9
2.1 蛋白質表現.....9
2.2 蛋白質分離、折疊與純化.....10
2.3 圓二色吸收光譜實驗.....11
2.4 DLS(Dynamic light scattering)實驗.....11
2.5 NMR光譜實驗.....12
2.5.1 IL-6的NMR樣品配置.....12
2.5.2 IL-6主鍊的化學位移和循序判定.....13
2.5.3 IL-6與不同濃度HS8滴定實驗.....13
三、實驗結果 .....14
3.1 IL-6蛋白質純化與鑑定.....14
3.2 圓二色吸收光譜實驗.....14
3.3 DLS (Dynamic light scattering)分析IL-6粒徑大小.....15
3.4 IL-6蛋白質的NMR光譜條件實驗.....16
3.5 IL-6主鍊循序判定.....17
3.6 IL-6與HS8滴定實驗.....18
四、討論.....19
五、參考文獻.....23

1. Yuzhalin, A.E. and A.G. Kutikhin, IL-6 Family and Cancer. 2015: p. 117-146.
2. Yamasaki, K., T. Taga, Y. Hirata, H. Yawata, Y. Kawanishi, B. Seed, T. Taniguchi, T. Hirano, and T. Kishimoto, Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science, 1988. 241(4867): p. 825-828.
3. Schaper, F. and S. Rose-John, Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev, 2015. 26(5): p. 475-87.
4. Hirano, T., K. Yasukawa, H. Harada, T. Taga, Y. Watanabe, T. Matsuda, S.-i. Kashiwamura, K. Nakajima, K. Koyama, A. Iwamatsu, S. Tsunasawa, F. Sakiyama, H. Matsui, Y. Takahara, T. Taniguchi, and T. Kishimoto, Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature, 1986. 324: p. 73.
5. Garbers, C., S. Aparicio-Siegmund, and S. Rose-John, The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol, 2015. 34: p. 75-82.
6. Zhou, J., J.-O. Jin, E.S. Patel, and Q. Yu, Interleukin-6 inhibits apoptosis of exocrine gland tissues under inflammatory conditions. Cytokine, 2015. 76(2): p. 244-252.
7. Luig, M., M.A. Kluger, B. Goerke, M. Meyer, A. Nosko, I. Yan, J. Scheller, H.-W. Mittrücker, S. Rose-John, R.A.K. Stahl, U. Panzer, and O.M. Steinmetz, Inflammation-Induced IL-6 Functions as a Natural Brake on Macrophages and Limits GN. Journal of the American Society of Nephrology, 2015. 26(7): p. 1597-1607.
8. Middleton, K., J. Jones, Z. Lwin, and J.I. Coward, Interleukin-6: an angiogenic target in solid tumours. Crit Rev Oncol Hematol, 2014. 89(1): p. 129-39.
9. Chalaris, A., C. Garbers, B. Rabe, S. Rose-John, and J. Scheller, The soluble Interleukin 6 receptor: Generation and role in inflammation and cancer. European Journal of Cell Biology, 2011. 90(6-7): p. 484-494.
10. Harker, J.A., G.M. Lewis, L. Mack, and E.I. Zuniga, Late Interleukin-6 Escalates T Follicular Helper Cell Responses and Controls a Chronic Viral Infection. Science, 2011. 334(6057): p. 825-829.
11. Ernst, M., D. P.Gearing, and A. R.Dunn, Functional and biochemical association of Hck with the LIF/IL-6 receptor signal transducing subunit gp130 in embryonic stem cells. The EMBO Journal, 1994: p. 1574-1584.
12. Hausherr, A., R. Tavares, M. Schaffer, A. Obermeier, C. Miksch, O. Mitina, J. Ellwart, M. Hallek, and G. Krause, Inhibition of IL-6-dependent growth of myeloma cells by an acidic peptide repressing the gp130-mediated activation of Src family kinases. Oncogene, 2007. 26(34): p. 4987-98.
13. Babon, J.J., L.N. Varghese, and N.A. Nicola, Inhibition of IL-6 family cytokines by SOCS3. Semin Immunol, 2014. 26(1): p. 13-9.
14. Chang, Q., L. Daly, and J. Bromberg, The IL-6 feed-forward loop: a driver of tumorigenesis. Semin Immunol, 2014. 26(1): p. 48-53.
15. Sasaki, A., K. Inagaki-Ohara, T. Yoshida, A. Yamanaka, M. Sasaki, H. Yasukawa, A.E. Koromilas, and A. Yoshimura, The N-terminal truncated isoform of SOCS3 translated from an alternative initiation AUG codon under stress conditions is stable due to the lack of a major ubiquitination site, Lys-6. J Biol Chem, 2003. 278(4): p. 2432-6.
16. Siveen, K.S., S. Sikka, R. Surana, X. Dai, J. Zhang, A.P. Kumar, B.K. Tan, G. Sethi, and A. Bishayee, Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta, 2014. 1845(2): p. 136-54.
17. Lesina, M., Magdalena U. Kurkowski, K. Ludes, S. Rose-John, M. Treiber, G. Klöppel, A. Yoshimura, W. Reindl, B. Sipos, S. Akira, Roland M. Schmid, and H. Algül, Stat3/Socs3 Activation by IL-6 Transsignaling Promotes Progression of Pancreatic Intraepithelial Neoplasia and Development of Pancreatic Cancer. Cancer Cell, 2011. 19(4): p. 456-469.
18. Sommer, J., C. Garbers, J. Wolf, A. Trad, J.M. Moll, M. Sack, R. Fischer, J. Grotzinger, G.H. Waetzig, D.M. Floss, and J. Scheller, Alternative intronic polyadenylation generates the interleukin-6 trans-signaling inhibitor sgp130-E10. J Biol Chem, 2014. 289(32): p. 22140-50.
19. Bottcher, J.P., O. Schanz, C. Garbers, A. Zaremba, S. Hegenbarth, C. Kurts, M. Beyer, J.L. Schultze, W. Kastenmuller, S. Rose-John, and P.A. Knolle, IL-6 trans-signaling-dependent rapid development of cytotoxic CD8+ T cell function. Cell Rep, 2014. 8(5): p. 1318-27.
20. Zhang, H., P. Neuhofer, L. Song, B. Rabe, M. Lesina, M.U. Kurkowski, M. Treiber, T. Wartmann, S. Regner, H. Thorlacius, D. Saur, G. Weirich, A. Yoshimura, W. Halangk, J.P. Mizgerd, R.M. Schmid, S. Rose-John, and H. Algul, IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J Clin Invest, 2013. 123(3): p. 1019-31.
21. Schuett, H., R. Oestreich, G.H. Waetzig, W. Annema, M. Luchtefeld, A. Hillmer, U. Bavendiek, J. von Felden, D. Divchev, T. Kempf, K.C. Wollert, D. Seegert, S. Rose-John, U.J. Tietge, B. Schieffer, and K. Grote, Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler Thromb Vasc Biol, 2012. 32(2): p. 281-90.
22. Campbell, I.L., M. Erta, S.L. Lim, R. Frausto, U. May, S. Rose-John, J. Scheller, and J. Hidalgo, Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci, 2014. 34(7): p. 2503-13.
23. Rose-John, S., IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci, 2012. 8(9): p. 1237-47.
24. Calabrese, L.H. and S. Rose-John, IL-6 biology: implications for clinical targeting in rheumatic disease. Nature Reviews Rheumatology, 2014. 10: p. 720.
25. Jostock, T., J.r.M. llberg, S.O. zbek, R. Atreya, G. Blinn, N. Voltz, M. Fischer, M.F. Neurath, and S. Rose-John, Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur. J. Biochem, 2001. 268: p. 160-167.
26. Garbers, C., N. Monhasery, S. Aparicio-Siegmund, J. Lokau, P. Baran, M.A. Nowell, S.A. Jones, S. Rose-John, and J. Scheller, The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases. Biochim Biophys Acta, 2014. 1842(9): p. 1485-94.
27. Ferreira, R.C., D.F. Freitag, A.J. Cutler, J.M. Howson, D.B. Rainbow, D.J. Smyth, S. Kaptoge, P. Clarke, C. Boreham, R.M. Coulson, M.L. Pekalski, W.M. Chen, S. Onengut-Gumuscu, S.S. Rich, A.S. Butterworth, A. Malarstig, J. Danesh, and J.A. Todd, Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet, 2013. 9(4): p. e1003444.
28. Xu, G.-Y., J. Hong, T. McDonagh, M. Stahi, L.E. Kay, J. Seehra, and D.A. Cumming, Complete 1H, 15N and 13C assignments, secondary structure, and topology of recombinant human interleukin-6. Biomolecular NMR, 1996. 8: p. 123-135.
29. Somers, W., M. Stahl, and J. S.Seehra, 1.9 Å crystal structure of interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO, 1997. 16: p. 989-997.
30. Mummery, R.S. and C.C. Rider, Characterization of the Heparin-Binding Properties of IL-6. The Journal of Immunology, 2000. 165(10): p. 5671-5679.
31. Pomin, V.H., Biological findings from the recent NMR-based studies of glycosaminoglycan-protein interactions. Glycobiology, 2014. 24(11): p. 991-1003.
32. Lindahl U, H.M., Glycosaminoglycans and their binding to biological macromolecules. Ann Rev Biochem., 1978. 47: p. 385-417.
33. Sasisekharan, R. and G. Venkataraman, Heparin and heparan sulfate_biosynthesis, structure and function. Chemical Biology, 2000. 4: p. 626-631.
34. Pomin, V.H., A.A. Piquet, M.S. Pereira, and P.A. Mourao, Residual keratan sulfate in chondroitin sulfate formulations for oral administration. Carbohydr Polym, 2012. 90(2): p. 839-46.
35. Sugahara, K., Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Current Opinion in Structural Biology, 2003. 13(5): p. 612-620.
36. Almond, A., Hyaluronan. Cell Mol Life Sci, 2007. 64(13): p. 1591-6.
37. Xu, D. and J.D. Esko, Demystifying heparan sulfate-protein interactions. Annu Rev Biochem, 2014. 83: p. 129-57.
38. Ori, A., M.C. Wilkinson, and D.G. Fernig, A systems biology approach for the investigation of the heparin/heparan sulfate interactome. J Biol Chem, 2011. 286(22): p. 19892-904.
39. Stanford, K.I., J.R. Bishop, E.M. Foley, J.C. Gonzales, I.R. Niesman, J.L. Witztum, and J.D. Esko, Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. The Journal of Clinical Investigation 2009. 119: p. 3236-3245.
40. Mascotti, D.P. and T.M. Lohman, Thermodynamics of Charged Oligopeptide-Heparin Interaction. Biochemistry, 1994. 34: p. 2908-2915.
41. Sheinerman, F.B., R. Norel, and B. Honig, Electrostatic aspects of protein-protein interactions. Current Opinion in Structural Biology, 2000. 10: p. 153-159.
42. Duchesne, L., V. Octeau, R.N. Bearon, A. Beckett, I.A. Prior, B. Lounis, and D.G. Fernig, Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparan sulfate. PLoS Biol, 2012. 10(7): p. e1001361.
43. Sadir, R., A. Imberty, F. Baleux, and H. Lortat-Jacob, Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J Biol Chem, 2004. 279(42): p. 43854-60.
44. and, D.S.G. and A.J. Olson, Structural Symmetry and Protein Function. Annual Review of Biophysics and Biomolecular Structure, 2000. 29(1): p. 105-153.
45. Pellegrini, L., D.F. Burke, F. von Delft, B. Mulloy, and T.L. Blundell, Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature, 2000. 407: p. 1029.
46. Lee, S., Y. Xue, J. Hu, Y. Wang, X. Liu, B. Demeler, and Y. Ha, The E2 Domains of APP and APLP1 Share a Conserved Mode of Dimerization. Biochemistry, 2011. 50(24): p. 5453-5464.
47. Olson, S.T. and a.I. Bjork, Predominant Contribution of Surface Approximation to the Mechanism of Heparin Acceleration of the Antithrombin-Thrombin Reaction. The Journal of biological chemistry 1991. 266: p. 6353-6364.
48. Björk, I. and U. Lindahl, Mechanism of the anticoagulant action of heparin. Mol Cell Biochem, 1982. 48.
49. Zulueta, M.M., S.Y. Lin, Y.T. Lin, C.J. Huang, C.C. Wang, C.C. Ku, Z. Shi, C.L. Chyan, D. Irene, L.H. Lim, T.I. Tsai, Y.P. Hu, S.D. Arco, C.H. Wong, and S.C. Hung, alpha-Glycosylation by D-glucosamine-derived donors: synthesis of heparosan and heparin analogues that interact with mycobacterial heparin-binding hemagglutinin. J Am Chem Soc, 2012. 134(21): p. 8988-95.
50. Kriittgen, A., S. Rose-John, C. Miiller, B. Wroblowski, A. Wollrner, J. Miillberg, T. Hirano, T. Kishimoto, and P.C. Heintich, Structure-function analysis of human interleukin-6. Biomedical Division, 1990. 262: p. 323-326.

(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *