帳號:guest(13.58.183.216)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:洪祥耘
作者(英文):Siang-Yun Hong
論文名稱:探討離子液體和其環糊精包合複合物於高壓下之紅外線吸收光譜的變化
論文名稱(英文):Using high pressure infrared spectroscopy to study ionic liquid/beta-cyclodextrin inclusion complexes
指導教授:張海舟
指導教授(英文):Hai-Chou Chang
口試委員:胡安仁
賴建智
口試委員(英文):An-ren Hu
Chien-Chih Lai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610512013
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:55
關鍵詞:離子液體環糊精高壓紅外光譜
關鍵詞(英文):ionic liquidcyclodextrinshigh pressureInfrared Spectroscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏收藏:0
本實驗我們進行了將三種不同烷基鏈長度的離子液體包覆進beta-cyclodextrin(β環糊精)的中心腔的包合反應實驗,進而研究主客包合物類的超分子結構與壓力變化的關係,分別是用三個碳的1-Methyl-3-propylimidazolium hexafluorophosphate、四個碳的1-Butyl-3-methylimidazolium hexafluorophosphate、八個碳的1-Methyl-3-octylimidazolium hexafluorophosphate,結果我們發現當包合物生成後,β環糊精的OH stretching會有紅位移的情況發生,估計是因為兩個分子結合後會改變環糊精原本的分子內氫鍵結構。
當我們對純離子液體和包合物進行加壓,並研究其紅外光譜時,純離子液體的特徵峰加壓之後會有藍位移的現象,部分峰甚至有裂分的情況;利用烷基鏈長度不同的離子液體合成的包合物會有不同的情況發生,當使用短烷基鏈離子液體進行實驗,會發現在壓力達到1.1GPa以上的時候離子液體從β環糊精的中心空腔中推擠出來,若繼續加壓離子液體所貢獻的訊號會恢復如純離子液體的訊號;而用長烷基鏈的離子液體進行實驗,發現離子液體不但沒有被擠壓出來,甚至因為β環糊精的包覆,影響到加壓後的排列方式。所以我們發現包合物的對壓力的穩定性和其客體的烷基鏈長度有關,因此在應用上需要注意受壓力的影響。
In this experiment, we carried out an inclusion reaction experiment in which three different alkyl chain length ionic liquids were coated into the central cavity of beta-cyclodextrin (β-cyclodextrin) to study the supramolecular structure and pressure changes of host-guest inclusions. The relationship is three-carbon 1-Methyl-3-propylimidazolium hexafluorophosphate, four carbon 1-Butyl-3-methylimidazolium hexafluorophosphate, eight carbon 1-Methyl-3-octylimidazolium hexafluorophosphate, and we found that when After the formation of the compound, the OH stretching of the β-cyclodextrin has a red shift, which is estimated to be because the binding of the two molecules changes the original intramolecular hydrogen bond structure of the cyclodextrin.
When we pressurize pure ionic liquids and clathrates and study their infrared spectra, the characteristic peaks of pure ionic liquids will have blue shift after pressurization, and some peaks may even have splitting. The inclusion complexes of different lengths of ionic liquids may have different conditions. When experiments are carried out using short alkyl chain ionic liquids, it is found that the ionic liquid is from the central cavity of β-cyclodextrin when the pressure reaches 1.1 GPa or more. Pushing out, if the signal contributed by continuing to pressurize the ionic liquid will recover the signal like pure ionic liquid; while experimenting with the long alkyl chain ionic liquid, it is found that the ionic liquid is not squeezed out, even because of the β-ring paste. Fine coating affects the arrangement after pressurization. Therefore, we found that the stability of the inclusion complex is related to the length of the alkyl chain of the guest, so it is necessary to pay attention to the influence of pressure in the application.
壹、 序論
1. 研究動機.....................................................1
2. 超分子(Supramolecular).......................................3
3. 環糊精(Cyclodextrins).......................................10
4. 離子液體(Ionic liquids).....................................15
5. 離子液體/環糊精包合物........................................20
貳、 實驗
1. 儀器........................................................23
2. 藥品........................................................25
3. 方法及試驗步驟...............................................26
參、 結果與討論
1. 常壓實驗.....................................................31
2. 高壓實驗....................................................36
肆、 結論......................................................50
伍、 參考文獻...................................................52
1.Welton,T. Room-Temperature Ionic Liquids: Solvent for Synthesis and Catalysis. Chem.Rev 1999,99,2071-2084.
2.P.Hallett,J;Welton,T. Room-Temperature Ionic Liquids: Solvent for Synthesis and Catalysis 2. Chem Rev 2011,111,3508-3576
3.Espino,M;Federico,J. Natural designer solvents for greening analytical chemistry. TrAC-Trend Anal Chem. 2016,76,126-136
4.Dommert,F;Wendler,K;Berger,R. Force Fields for Studying the Structure and Dynamics of ionic liquids: A Critical Review of Recent Developments. Chemphyschem 2012,13,1625-1637
5.Docherty,K.M;Kulpa,J;Charles,F. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 2005,7,185-189.
6.Swatloski,K.A;Rogers,R.D;Holbrey,J.D;Memon,S.B. Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids. Chem.Commun 2004,6,668-669.
7.Stock,F;Hoffmann,J;Ranke,J;Stoermann,R;Ondruschka,B;Jastorff,B. Safer and Greener Catalysts – Design of High Performance, Biodegradable and Low Toxicity Ionic Liquids. Green Chem 2004,6,286-290.
8.Hodyna,D;Francois,B;Metelytsia,L;Riabov,S;Kobrina,L. Efficient antimicrobial activity and reduced toxicity of 1-dodecyl-3-methylimidazolium tetrafluoroborate ionic liquid/beta-cyclodextrin complex.Chem Eng J 2016,284,1136-1145.
9.Steed,J.W;Atwood,J.L. Self-Assembly. Supramolecular Chem 2009,2,1002-1003.
10.Anelli,P.L;Spencer,N;Stoddart,J.F. A molecular shuttle. J Am Chem Soc 1991,113,5131-5133.
11.Koumura,N;Zijlstra,R.W;Delden,A;Harada,N;Feringa,B.L. Light-Driven Monodirectional Molecular Rotor. Nature 1999,401,152-155.
12.Jambhekar,S.S;Breen,P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties,formation of complexes, and types of complex. Drug Discov Today 2016,21,356-368.
13.Roy,A;Saha,S;Datta,B. Insertion behavior of imidazolium and pyrrolidinium based ionic liquids into α and β-cyclodextrin: mechanism and factors leading to host-guest inclusion complexe. RSC Adv,2016,6,100016-100027.
14.Jozwiakowski,M.J;Connors,K.A. Aqueous solubility behabior of three cyclodextrins. Cabohyd Res,1985,143,51-59.
15.Frank,D.W;Gray,J.E;Weaver,R.N. Cyclodextrin nephrosis in the rat. Am J Pathol 1976,83,367-382.
16.Khan,N.A;Durakshan,M. Cyclodextrin: An overview. Int J Bioassays 2013,2,858-865.
17.Loftsson,T Cyclodextrins and biopharmaceutics classification system of drugs. J Incl Phenom Macros Chem,2002,44,63-67.
18.Sohi,S;Sultana,Y;Khar,R.P. Taste making technologies in oral pharmaceuticals: recent development and approaches. Drug Develop. Ind. Pharm. 2004,30, 429-448.
19.Loftsson,T;Brewster,M.E. Pharmaceutical applications of cyclodextrins2: in vivo drug delivery. J.Pharm.Sci,1996,85,1142-1168.
20.Havir,R;Kasraian,K. Palatable chewable tablet. US Pattent,2002,7,482
21.Holbrey,J.D;Seddon,K.R. The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates;ionic liquids and ionic liquid crystal. J.Chem.Soc,Dalton Trans.1999,13,2133-2139.
22.Yoshimura,Y;Takekiyo,T;Koyama,Y;Takaku,M;Kikuchi,N. Conformational adjustment for high-pressure glass formation of 1-alkyl-3-methylimidazolium tetrafluoroborate. Phys Chem Chem Phys,2017,19,869-870.
23.Ahn,Y;Song,Y;Kim,H;Kwak,SY. Formation of cellulose-carbene complex via depolymerization in ILs: Dependence of IL types on kinetics, conformation and dispersity. Carbohyd Polym,2017,159,86-93
24.Liu,F;Liu,J;Yan,Z.C;Zhang,B;Zhang,J. Crystallization and Rheology of Poly(ethylene oxide) in Imidazolium Ionic Liquids. Macromolecules,2016,49,6106-6115.
25.Todinova,S;Guncheva,M;Yancheva,D. Thermal and conformational stability of insulin in the presence of imidazolium-based ionic liquids. J Therm Anal Calorim,2016,123,2591-2598.
26.MacFalane,D.R;Huang,J;Forsyth,M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature,402,792-794.
27.Doyle,M;Choi,S.K;Proulx,G. High‐Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane‐Ionic Liquid Composites. J Electrochem Soc,2000,147,34-38.
28.Kubo,W;Kitamura,T;Hanabusa,Y;Wade,S. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chem Commun,2002,1,374-375.
29.Haward,S.J;Sharma,C;Butts,C.P;McKinly,G.H;Rahatekar,S.S. Shear and Extensional Rheology of Cellulose/Ionic Liquid Solutions. Biomacromolecules,2012,13,1688-1699.
30.Tran,C.D;Oliveira,D. Fluorescence determination of enantiomeric composition of pharmaceuticals via use of ionic liquid that serves as both solvent and chiral selector. Anal Biochem,2006,356,51-58.
31.Martins,P.L.G;Brage,A.R;Rosso,V.V. Can ionic liquid solvents be applied in the food industry? Trends Food Sci Tech,2017,66,117-124.
32.Pham,T.P.T;Cho,C.W;Yun,Y.S. Environmental fate and toxicity of ionic liquids: A review. Water Res,2010,44,352-372.
33.Bubalo,M.C;Radosevic,K;Redovnikovic,IR;Halambek,J A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf,2014,99,1-12.
34.Egorova,KS;Ananikov,VP. Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. Chemsuschem,2014,7,336-360.
35.Carson,L;Chau,PKW;Earle,M;Gilea,M.A;Gilmore,B.F. Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem,2009,4,492-497.
36.Li,S;Xing,P;Hou,Y;Yang,J;Yang,X;Wang,B. Formation of a sheet-like hydrogel from vesicles via precipitates based on an ionic liquid-based surfactant and β-cyclodextrin. J Mol Liq,2013,188,74-80.
37.Wong,P.T.T;Mofatt,D.J. The Uncoupled O-H or O-D Stretch in Water as an Internal Pressure Gauge for High-Pressure Infrared Spectroscopy of Aqueous Systems. Appl.Spectrosc,1987,41,1070-1072.
38.Gu,Y;Kar,T;Scheiner,S. Fundamental Properties of the CH···O Interaction: Is It a True Hydrogen Bond? J.Am.Chem.Soc. 1999,121,9411-9422.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *