帳號:guest(3.145.74.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳國昕
作者(英文):Kuo-Hsin Chen
論文名稱:A. Theoretical study of the Elusive Oxaziridine (c-H2CONH) B. Ionization potential calculations of C3H6O isomers C. Franck-Condon simulated electronic spectra of gold carbene complexes
論文名稱(英文):A. Theoretical study of the Elusive Oxaziridine (c-H2CONH) B. Ionization potential calculations of C3H6O isomers C. Franck-Condon simulated electronic spectra of gold carbene complexes
指導教授:張秀華
指導教授(英文):Hsiu-Hwa Chang
口試委員:梁剛荐
楊雪慧
口試委員(英文):Max-K. Leong
Hsueh-Hui Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610512014
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:155
關鍵詞:氧氮環丙烷游離能弗蘭克-康登原理
關鍵詞(英文):OxaziridineIonization potentialC3H6OFranck-Condon factor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
A. Theoretical study of the Elusive Oxaziridine (c-H2CONH)
The formation paths of oxaziridine on singlet and triplet CH2+HNO reaction surfaces have been studied with ab initio electronic structure calculations. The coupled cluster CCSD method with cc-pVTZ basis set are used to optimize the geometries of the complexes, transition states, intermediates, and dissociation products. The energies of these optimized geometries are refined by CCSD(T)/CBS with CCSD/cc-pVTZ zero-point energy corrections. The reaction paths with transition states were determined using intrinsic reaction coordinate calculations. The minimum energy crossing points between singlet and triplet potential energy surfuces are searched by CPMCSCF method with TZVPP basis set. Oxaziridine was observed along with the predicated ionization potentials of CH3NO isomers, the results help to confirm the experimental observations.
B. Ionization potential calculations of C3H6O isomers
In this thesis, the ionization potentials of the molecule formula C3H6O isomers such as enols, aldehydes, and ketones are obtained by ab initio electronic structure calculation. The optimized geometries and the harmonic frequencies of the C3H6O isomers are searched at B3LYP/cc-pVTZ level. The electronic structure calculations locate the closed-shell neutral local minima, whose adiabatic ionization potentials and relative energies are refined at the CCSD(T)/CBS level with B3LYP/cc-pVTZ zero-point energy corrections. The adiabatic ionization potentials of the C3H6O isomers are found to be in the range of 8.62 to 10.25 eV.
C. Franck-Condon simulated electronic spectra of gold carbene complexes
The Franck-Condon simulated emission spectra of gold carbene complexes of [Au(NHC)2][AgBr2] are studied by ab initio electronic structure calculation. The optimized geometries, the harmonic frequencies and the vibrational modes of the ground state (S0) and the first triplet state (T1) gold carbene complexes are searched at density functional theory wB97XD/LanL2DZ level. The Franck-Condon simulated emission spectra of Au(I)-NHC complexes are calculated, then the spectra are compared with the experimental emission spectra. The results are consistent with experimental spectra.
A. Theoretical study of the Elusive Oxaziridine (c-H2CONH) 1
1. Introduction 1
2. Theoretical methods 3
2.1 Ab initio electronic structure calculations for the reaction pathways 3
2.2 Coupled-Cluster theory 3
2.3 Complete Basis Set (CBS) 4
2.4 CPMCSCF(Coupled Perturbed Multi-Configuration Self-Consistent Field) 5
3. Results and Discussions 7
3.1 Collision Complexes 7
3.2 Reaction pathways between complexes 8
3.3 Reaction pathways between Oxaziridine and intermediates 11
3.4 Reaction pathways of 1c2 and 1c3 isomerization 13
3.5 Reaction pathways about isomerization processes between c1 and c1' 14
3.6 Ionization potentials of CH3NO isomers in experiment 14
4. Conclusion 17
5. Reference 19
Table A1. The calculated energies for CCSD/cc-pVTZ optimized geometries of reactants, complexes, intermediates, transition states, and dissociation products of the singlet and triplet CH2+HNO reaction. 23
Table A2. The calculated adiabatic ionization potentials for the CCSD/cc-pVTZ optimized geometries of CH3NO isomers. 28
Figure A1. The pathway of the complete singlet surface, in which the energy in kJ/mol relative to 3CH2+HNO reaction, are compute CCSD(T)/CBS at CCSD/cc-pVTZ optimized geometries. 32
Figure A2. The pathway of the complete triplet surface, in which the energy in kJ/mol relative to 3CH2+HNO reaction, are compute CCSD(T)/CBS at CCSD/cc-pVTZ optimized geometries. 33
Figure A3. The pathway between the singlet and triplet complexes, in which the energy in kJ/mol relative to 3CH2+HNO reaction, are compute CCSD(T)/CBS at CCSD/cc-pVTZ optimized geometries. 34
Figure A4. The pathway of the 1c1 group, in which the energy in kJ/mol relative to 3CH2+HNO reaction, are compute CCSD(T)/CBS at CCSD/cc-pVTZ optimized geometries. 35
Figure A5. The pathway of the 3c1 group, in which the energy in kJ/mol relative to 3CH2+HNO reaction, are compute CCSD(T)/CBS at CCSD/cc-pVTZ optimized geometries. 36
Figure A6. The pathway of the c1 inversion process, in which the energy in kJ/mol relative to 1c1, are compute CCSD(T)/CBS at CCSD/cc-pVTZ optimized geometries. 37
Figure A7. The CCSD/cc-pVTZ optimized geometries of reactants, complexes, intermediates, dissociation products, and intersystem crossings of CH2+HNO reaction, in which the point group is in parenthesis, lengths in angstrom, and angles in degree. 38
Figure A8. The CCSD/cc-pVTZ optimized geometries of vibrational transition states of the CH2+HNO reaction, in which the point group is in parenthesis, lengths in angstrom, and angles in degree. 44
Figure A9. The CCSD/cc-pVTZ optimized geometries of CH3NO isomers, in which the point group is in parenthesis, lengths in angstrom, and angles in degree. 49
Figure A10. The intrinsic reaction coordinate path of each channel. 55
Figure A11. The relation between theoretical ionization potentials and experimental temperature program desorption profiles. 76
B. Ionization potential calculations of C3H6O isomers 77
1. Introduction 77
2. Theoretical methods 79
2.1 Ab initio electronic structure calculation 79
2.2 DFT (Density Functional Theory) 79
3. Results and Discussions 81
3.1 Ketone compound 81
3.2 Aldehyde compound 82
3.3 Epoxide compound 82
3.4 Enol compound 83
3.5 Alcohol compound 86
4. Conclusion 89
5. Reference 91
Table B1. The calculated adiabatic ionization potentials for the B3LYP/cc-pVTZ optimized geometries of C3H6O isomers. 95
Table B2. The tendency of adiabatic ionization potentials of C3H6O functional groups. 99
Table B3. The HOMO populations of molecular orbital diagram of neutral and cationic C3H6O isomers. 100
Figure B1. The B3LYP/cc-pVTZ optimized geometries of C3H6O isomers, in which the point group is in parenthesis, lengths in angstrom, and angles in degree. 113
C. Franck-Condon simulated electronic spectra of gold carbene complexes 121
1. Introduction 121
2. Theoretical methods 123
2.1 Ab initio electronic structure calculation 123
2.2 Franck-Condon simulation spectrum 123
3. Results and Discussions 127
[Au(C16, EC2-imy)2][AgBr2] (I) Emission spectrum 127
[Au(C1, EC16-imy)2][AgBr2] (II) Emission spectrum 128
4. Conclusion 129
5. Reference 131
Table C1. The vibration mode description and frequency of [Au(C1, EC1-imy)2][AgBr2]. 134
Figure C1. [Au(C16, EC2-imy)2][AgBr2] emission spectrum. 146
Figure C2. [Au(C1, EC16-imy)2][AgBr2] emission spectrum. 147
Figure C3. The optimized geometries of [Au(C1, EC1-imy)2][AgBr2] by wB97XD/LanL2DZ for singlet ground state and the first triplet state, in which the point group is in parenthesis, lengths in angstrom, and angles in degree. 148
Figure C4. Orbital diagram of HOMO-4 to LUMO+4 levels of [Au(C1, EC1-imy)2][AgBr2] for the single state and the first triplet state. 150
Figure C5. Orbital diagram of HOMO-4 to LUMO+4 levels of [Au(C16, EC2-imy)2][AgBr2] for the single state and the first triplet state. 152
Figure C6. Orbital diagram of HOMO-4 to LUMO+4 levels of [Au(C1, EC16-imy)2][AgBr2] for the single state and the first triplet state. 154

A. Theoretical study of the Elusive Oxaziridine (c-H2CONH)
1. K. S. Williamson, D. J. Michaelis and T. P. Yoon. Advances in the Chemistry of Oxaziridines. Chem. Rev., 2014, 114, 8016.
2. F. A. L. Anet and J. M. Osyany. Nuclear Magnetic Resonance Spectra and Nitrogen Inversion in 1-Acylaziridines. J. Am. Chem. Soc., 1967, 89, 352.
3. J. Aubé. Oxiziridine rearrangements in asymmetric synthesis. Chem. Soc. Rev., 1997, 26, 269.
4. H. Ono, J. S. Splitter and M. Calvin. The effect of the phenyl substituent on the nitrogen inversion barrier in a 2-phenyloxaziridine. Tetrahedron Letters, 1973, 14, 4107.
5. I. Rajyaguru and H. S. Rzepa. An SCF-MO study of the relative barriers to inversion and to ring opening in three-membered ring carbanions. J. Chem. Soc., Perkin Trans. 2, 1987, 359.
6. F. A. Davis and A. C. Sheppard. Applications of oxaziridines in organic synthesis. Tetrahedron, 1989, 45, 5703.
7. F. A. Davis, N. F. Abdul-Malik, S. B. Awad and M. E. Harakal. Epoxidation of olefins by oxaziridines. Tetrahedron Letters, 1981, 22, 917.
8. F. A. Davis, R. Jenkins Jr. and S. G. Yocklovich. 2-Arenesulfonyl-3-aryloxaziridines: A new class of aprotic oxidizing agents (oxidation of organic sulfur compounds). Tetrahedron Letters, 1978, 19, 5171.
9. F. A. Davis and A. C. Sheppard. Oxidation of enamines to α-hydroxy ketones and α-amino ketones using N-sulfonyloxaziridines. Tetrahedron Letters, 1988, 29, 4365.
10. J. Vidal, S. Damestoy, L. Guy, J.-C. Hannachi, A. Aubry and A. Collet. N‐Alkyloxycarbonyl‐3‐aryloxaziridines: Their Preparation, Structure, and Utilization As Electrophilic Amination Reagents. Chem. Eur. J., 1997, 3, 1691.
11. J. Vidal, J. Drouin and A. Collet. N-amination using N-methoxycarbonyl-3 -phenyloxaziridine. Direct access to chiral Nβ-protected α-hydrazinoacids and carbazates. J. Chem. Soc., Chem. Commun., 1991, 435.
12. J. Vidal, J.-C. Hannachi, G. Hourdin, J.-C. Mulatier and A. Collet. N-Boc-3 -trichloromethyloxaziridine: a new, powerful reagent for electrophilic amination. Tetrahedron Letters, 1998, 39, 8845.
13. W. D. Emmons. The Preparation and Properties of Oxaziranes. J. Am. Chem. Soc., 1957, 79, 5739.
14. J. S. Splitter and M. Calvin. Oxaziridines. I. The Irradiation Products of Several Nitrones. J. Org. Chem., 1965, 30, 3427.
15. S. K. Singh, T.-Y. Tsai, B.-J. Sun, A. H. H. Chang, A. M. Mebel and R. I. Kaiser. Gas Phase Identification of the Elusive N-Hydroxyoxaziridine(c‑H2CON(OH)): A Chiral Molecule. J. Phys. Chem. Lett., 2020, 11, 5383.
16. (a) G. D. Purvis III and R. J. Bartlett. A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys., 1982, 76, 1910. (b) R. J. Bartlett and M. Musiał. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys., 2007, 79, 291.
17. K. A. Peterson, D. E. Woon and T. H. Dunning. Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction. J. Chem. Phys., 1994, 100, 7410.
18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.
19. (a) A. D. Becke. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys., 1992, 96, 2155. (b) A. D. Becke. Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. J. Chem. Phys., 1992, 97, 9173. (c) A. D. Becke. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648. (d) C. Lee, W. Yang and R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37, 785.
20. I. N. Levine. Quantum Chemistry. Fifth Edition, p.568.
21. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. Miller III, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and M. Welborn, Molpro: a general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci., 2012, 2, 242-253.
22. S. K. Singh, J. L. Jeunesse, C. Zhu, N. F. Kleimeier, K.-H. Chen, B.-J. Sun, A. H. H. Chang and R. I. Kaiser. Gas Phase Identification of the Elusive Oxaziridine (c-H2CONH) – An Optically Active Molecule. ASAP.

B. Ionization potential calculations of C3H6O isomers
1. Y. Matsuda, K. Hoki, S. Maeda, K.-I. Hanaue, K. Ohta, K. Morokuma, N. Mikami
and A. Fujii. Experimental and theoretical investigations of isomerization reactions of ionized acetone and its dimer. Phys. Chem. Chem. Phys., 2012, 14, 712.
2. L. Wei, B. Yang, R. Yang, C. Huang, J. Wang, X. Shan, L. Sheng, Y. Zhang, F. Qi, C.-S. Lam and W.-K. Li. A Vacuum Ultraviolet Photoionization Mass Spectrometric Study of Acetone. J. Phys. Chem. A, 2005, 109, 4231.
3. M. Elango, G. S. Maciel, F. Palazzetti, A. Lombardi and V. Aquilanti. Quantum Chemistry of C3H6O Molecules: Structure and Stability, Isomerization Pathways, and Chirality Changing Mechanisms. J. Phys. Chem. A, 2010, 114, 9864.
4. A. M. Turner, A. Bergantini, M. J. Abplanalp, C. Zhu, S. Góbi, B.-J. Sun, K.-H. Chao, A. H.H. Chang, C. Meinert and R. I. Kaiser. An interstellar synthesis of phosphorus oxoacids. Nature Commun., 2018, 9, 3851.
5. R. Frigge, C. Zhu, A. M. Turner, M. J. Abplanalp, B.-J. Sun, Y.-S. Huang, A. H. H. Chang and R. I. Kaiser. Synthesis of the hitherto elusive formylphosphine (HCOPH2) in the interstellar medium – a molecule with an exotic phosphorus peptide bond. Chem. Commun., 2018, 54, 10152.
6. M. Förstel, P. Maksyutenko, B. M. Jones, B.-J. Sun, A. H. H. Chang and R. I. Kaiser. Synthesis of urea in cometary model ices and implications for Comet 67P/Churyumov–Gerasimenko. Chem. Commun., 2016, 52, 741.
7. M. Förstel, P. Maksyutenko, B. M. Jones, B. J. Sun, H. C. Lee, A. H. H. Chang, and R. I. Kaiser. On the formation of amide polymers via carbonyl–amino group linkages in energetically processed ices of astrophysical relevance. Astrophys. J., 2016, 820, 117.
8. R. Frigge, C. Zhu, A. M. Turner, M. J. Abplanalp, A. Bergantini, B.-J. Sun, Y.-L. Chen, A. H. H. Chang and R. I. Kaiser. A Vacuum Ultraviolet Photoionization Study on the Formation of N-methyl Formamide (HCONHCH3) in Deep Space: A Potential Interstellar Molecule with a Peptide Bond. Astrophys. J., 2018, 862, 84.
9. C. Zhu, R. Frigge, A. M. Turner, M. J. Abplanalp, B.-J. Sun, Y.-L. Chen, A. H. H. Chang and R. I. Kaiser. A vacuum ultraviolet photoionization study on the formation of methanimine (CH2NH) and ethylenediamine (NH2CH2CH2NH2) in low temperature interstellar model ices exposed to ionizing radiation. Phys. Chem. Chem. Phys., 2019, 21, 1952.
10. F. Combes, M. Gerin, A. Wooten, G. Wlodarczak, F. Clausset and P. J. Encrenaz. Acetone in interstellar space. Astron. Astrophys., 1987, 180, L13–L16.
11. D. N. Friedel, L. E. Snyder, A. J. Remijan and B. E. Turner. Detection of interstellar acetone toward the Orion-KL hot core. Astrophys. J., 2005, 632, L95–L98.
12. J. M. Hollis, P. R. Jewell, F. J. Lovas, A. Remijan and H. Møllendal. Green bank telescope detection of new interstellar aldehydes: propenal and propanal. Astrophys. J., 2004, 310, L21–L24.
13. (a) A. D. Becke. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys., 1992, 96, 2155. (b) A. D. Becke. Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. J. Chem. Phys., 1992, 97, 9173. (c) A. D. Becke. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648. (d) C. Lee, W. Yang and R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37, 785.
14. (a) G. D. Purvis III and R. J. Bartlett. A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys., 1982, 76, 1910. (b) R. J. Bartlett and M. Musiał. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys., 2007, 79, 291.
15. K. A. Peterson, D. E. Woon and T. H. Dunning. Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction. J. Chem. Phys., 1994, 100, 7410.
16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.
17. I. N. Levine. Quantum Chemistry. Fifth Edition, p.573.
18. J. C. Traeger, R. G. McLoughlin and A. J. C. Nicholson. Heat of formation for acetyl cation in the gas phase. J. Am. Chem. Soc., 1982, 104, 5318.
19. J. C.Traeger. Heat of formation for the formyl cation by photoionization mass spectrometry. Int. J. Mass Spectrom. Ion Processes, 1985, 66, 271.
20. K. Watanabe, T. Nakayama and J. Mottl. Ionization potentials of some molecules. J. Quant. Spectrosc. Radiat. Transfer, 1962, 2, 369.
21. F. Tureček and V. Hanuš. Loss of methyl from [H2C=C(OH)-CH3]+˙ ions prepared by electron impact ionization of unstable 2‐hydroxypropene. Organic Mass Spectrometry, 1984, 19, 631.
22. F. Tureček. (E)- and (Z)-Prop-1-en-1-ol: Gas-phase Generation and Determination of Heats of Formation by Mass Spectrometry. J. Chem. Soc., Chem. Commun., 1984, 1374.

C. Franck-Condon simulated electronic spectra of gold carbene
1. W. Liu and R. Gust. Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs. Chem. Soc. Rev., 2013, 42, 755.
2. R. Visbal and M. C. Gimeno. N-Heterocyclic carbene metal complexes: Photoluminescence and applications. Chem. Soc. Rev., 2014, 43, 3551.
3. N. Marion and S. P. Nolan. N-Heterocyclic carbenes in gold catalysis. Chem. Soc. Rev., 2008, 37, 1776.
4. P. J. Barnard, M. V. Baker, S. J. Berners-Price and D. A. Day. Mitochondrial Permeability Transition Induced by Dinuclear gold(I)-carbene Complexes: Potential New Antimitochondrial Antitumour Agents. J. Inorg. Biochem., 2004, 98, 1642.
5. M. V. Baker, P. J. Barnard, S. J. Berners-Price, S. K. Brayshaw, J. L. Hickey, B. W. Skelton and A. H. White. Cationic, linear Au(I) N-heterocyclic carbene complexes: synthesis, structure and anti-mitochondrial activity. Dalton Trans., 2006, 3708.
6. J. L. Hickey, R. A. Ruhayel, P. J. Barnard, M. V. Baker, S. J. Berners-Price and A. Filipovska. Mitochondria-Targeted Chemotherapeutics: The Rational Design of Gold(I) N-Heterocyclic Carbene Complexes That Are Selectively Toxic to Cancer Cells and Target Protein Selenols in Preference to Thiols. J. Am. Chem. Soc., 2008, 130, 12570.
7. M. M. Jellicoe, S. J. Nichols, B. A. Callus, M. V. Baker, P. J. Barnard, S. J. Berners-Price, J. Whelan, G. C. Yeoh and A. Filipovska. Bioenergetic differences selectively sensitize tumorigenic liver progenitor cells to a new gold(I) compound. Carcinogenesis, 2008, 29, 1124.
8. I. J. B. Lin and C. S. Vasam. Preparation and application of N-heterocyclic carbene complexes of Ag(I). Coordination Chemistry Reviews, 2007, 251, 642.
9. W. A. Herrmann. N‐Heterocyclic Carbenes: A New Concept in Organometallic Catalysis. Angew. Chem. Int. Ed., 2002, 41, 1290.
10. S. P. Nolan. The Development and Catalytic Uses of N-Heterocyclic Carbene Gold Complexes. Acc. Chem. Res., 2011, 44, 91.
11. P. de Frémont, N. M. Scott, E. D. Stevens and S. P. Nolan. Synthesis and Structural Characterization of N-Heterocyclic Carbene Gold(I) Complexes. Organometallics, 2005, 24, 2411.
12. M. R. L. Furst and C. S. J. Cazin. Copper N-heterocyclic carbene (NHC) complexes as carbene transfer reagents. Chem. Commun., 2010, 46, 6924.
13. H. M. J. Wang and I. J. B. Lin. Facile Synthesis of Silver(I)−Carbene Complexes. Useful Carbene Transfer Agents. Organometallics, 1998, 17, 972.
14. A. Collado, A. Gómez-Suárez, A. R. Martin, A. M. Z. Slawina and S. P. Nolan. Straightforward synthesis of [Au(NHC)X] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. Chem. Commun., 2013, 49, 5541.
15. C. K. Lee, C. S. Vasam, T. W. Huang, H. M. J. Wang, R. Y. Yang, C. S. Lee and I. J. B. Lin. Silver(I) N-Heterocyclic Carbenes with Long N-Alkyl Chains. Organometallics, 2006, 25, 3768.
16. Y. Chen, G. Cheng, K. Li, D. P. Shelar, W. Lu and C.-M. Che. Phosphorescent polymeric nanomaterials with metallophilic d10⋯d10 interactions self-assembled from [Au(NHC)2]+ and [M(CN)2]‾. Chem. Sci., 2014, 5, 1348.
17. J.-D. Chai and M. Head-Gordon. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys., 2008, 10, 6615.
18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.
19. K. K. Liang, R. Chang, M. Hayashi and S. H. Lin. Principles of Molecular Spectroscopy and Photochemistry. p.60.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *