|
Andrés, A., Rosés, M., Ràfols, C., Bosch, E., Espinosa, S., Segarra, V., & Huerta, J. M. (2015). Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. Eur. J. Pharm. Sci., 76, 181-191. doi:10.1016/j.ejps.2015.05.008 Arnott, J. A., Kumar, R., & Planey, S. L. (2013). Lipophilicity Indices for Drug Development J. Appl. Biopharm. Pharmacokinet., 1, 31-36 doi:10.14205/2309-4435.2013.01.01.6 Atkinson, H. C., & Begg, E. J. (1988). Relationship between Human Milk Lipid-Ultrafiltrate and Octanol-Water Partition Coefficients. J. Pharm. Sci., 77(9), 796-798. doi:10.1002/jps.2600770916 Austin, R. P., Davis, A. M., & Manners, C. N. (1995). Partitioning of ionizing molecules between aqueous buffers and phospholipid vesicles. J. Pharm. Sci., 84(10), 1180-1183. doi:10.1002/jps.2600841008 Avery, M. A., Bonk, J. D., Chong, W. K. M., Mehrotra, S., Miller, R., Milhous, W., . . . Wyandt, C. (1995). Structure-Activity Relationships of the Antimalarial Agent Artemisinin. 2. Effect of Heteroatom Substitution at O-11: Synthesis and Bioassay of N-Alkyl-11-aza-9-desmethylartemisinins. J. Med. Chem., 38(26), 5038-5044. doi:10.1021/jm00026a011 Bajusz, D., Rácz, A., & Héberger, K. (2019). Comparison of Data Fusion Methods as Consensus Scores for Ensemble Docking. Molecules, 24(15), 2690. doi:10.3390/molecules24152690 Belkin, N. J., Kantor, P., Fox, E. A., & Shaw, J. A. (1995). Combining the evidence of multiple query representations for information retrieval. Inf. Process. Manage., 31(3), 431-448. doi:10.1016/0306-4573(94)00057-A Cheng, T., Zhao, Y., Li, X., Lin, F., Xu, Y., Zhang, X., . . . Lai, L. (2007). Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. Journal of Chemical Information and Modeling, 47(6), 2140-2148. doi:10.1021/ci700257y Chi, C.-T., Lee, M.-H., Weng, C.-F., & Leong, M. K. (2019). In Silico Prediction of PAMPA Effective Permeability Using a Two-QSAR Approach. Int. J. Mol. Sci., 20(13), 3170. doi:10.3390/ijms20133170 Chirico, N., & Gramatica, P. (2012). Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection. J. Chem. Inf. Model., 52(8), 2044-2058. doi:10.1021/ci300084j Clark, D. E., & Pickett, S. D. (2000). Computational methods for the prediction of ‘drug-likeness’. Drug Discovery Today, 5(2), 49-58. doi:10.1016/S1359-6446(99)01451-8 Cortes, C., & Vapnik, V. (1995). Support-vector networks. Mach. Learn., 20(3), 273-297. doi:10.1007/BF00994018 Dearden, J. C., & Bresnen, G. M. (1988). The Measurement of Partition Coefficients. Quant. Struct.-Act. Relat., 7(3), 133-144. doi:10.1002/qsar.19880070304 Ding, Y.-L., Lyu, Y.-C., & Leong, M. K. (2017). In silico prediction of the mutagenicity of nitroaromatic compounds using a novel two-QSAR approach. Toxicol. In Vitro, 40, 102-114. doi:10.1016/j.tiv.2016.12.013 Ghose, A. K., & Crippen, G. M. (1986). Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure-Activity Relationships I. Partition Coefficients as a Measure of Hydrophobicity. J. Comput. Chem., 7(4), 565. doi:10.1002/jcc.540070419 Ginn, C. M. R., Turner, D. B., Willett, P., Ferguson, A. M., & Heritage, T. W. (1997). Similarity Searching in Files of Three-Dimensional Chemical Structures: Evaluation of the EVA Descriptor and Combination of Rankings Using Data Fusion. J. Chem. Inf. Comput. Sci., 37(1), 23-37. doi:10.1021/ci960466u Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y.-D., Lee, K.-H., & Tropsha, A. J. J. o. C.-A. M. D. (2003). Rational selection of training and test sets for the development of validated QSAR models. J. Comput.-Aided Mol. Des., 17(2), 241-253. doi:10.1023/a:1025386326946 Hall, D. L., & Llinas, J. (1997). An introduction to multisensor data fusion. Proc. IEEE, 85(1), 6-23. doi:10.1109/5.554205 Hansch, C., Leo, A., & Hoekman, D. (1995). Exploring QSAR: Hydrophobic, Electronic, and Steric Constants (Vol. 2). Washington, DC: American Chemical Society. Harnisch, M., Möckel, H. J., & Schulze, G. (1983). Relationship between log Pow, shake-flask values and capacity factors derived from reversed-phase high-performance liquid chromatography for n-alkylbenzenes and some oecd reference substances. J. Chromatogr. A, 282, 315-332. doi:10.1016/S0021-9673(00)91610-8 Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004, 25-29 July 2004). Extreme learning machine: a new learning scheme of feedforward neural networks. Paper presented at the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541). Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1), 489-501. doi:10.1016/j.neucom.2005.12.126 Huang, G., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. Part B-Cybern., 42(2), 513-529. doi:10.1109/TSMCB.2011.2168604 Hubert, M., & Engelen, S. (2004). Robust PCA and classification in biosciences. Bioinformatics, 20(11), 1728-1736. doi:10.1093/bioinformatics/bth158 %J Bioinformatics Kearsley, S. K., Sallamack, S., Fluder, E. M., Andose, J. D., Mosley, R. T., & Sheridan, R. P. (1996). Chemical Similarity Using Physiochemical Property Descriptors. J. Chem. Inf. Comput. Sci., 36(1), 118-127. doi:10.1021/ci950274j Kril, M. B., & Fung, H.-L. (1990). Influence of hydrophobicity on the ion exchange selectivity coefficients for aromatic amines. J. Pharm. Sci., 79(5), 440-443. doi:10.1002/jps.2600790517 Lee, M.-H., Ta, G. H., Weng, C.-F., & Leong, M. K. (2020). In Silico Prediction of Intestinal Permeability by Hierarchical Support Vector Regression. Int. J. Mol. Sci., 21(10), 3582. doi:10.3390/ijms21103582 Leeson, P. D., & Springthorpe, B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 6(11), 881-890. doi:10.1038/nrd2445 Leo, A., Hansch, C., & Elkins, D. (1971). Partition coefficients and their uses. Chem. Rev., 71(6), 525-616. doi:10.1021/cr60274a001 Leong, M. K., Chen, Y.-M., & Chen, T.-H. (2009). Prediction of human cytochrome P450 2B6-substrate interactions using hierarchical support vector regression approach. J. Comput. Chem., 30(12), 1899-1909. doi:10.1002/jcc.21190 Leong, M. K., Lin, S.-W., Chen, H.-B., & Tsai, F.-Y. (2010). Predicting Mutagenicity of Aromatic Amines by Various Machine Learning Approaches. Toxicol. Sci., 116(2), 498-513. doi:10.1093/toxsci/kfq159 %J Toxicological Sciences Liao, Q., Yao, J., & Yuan, S. (2006). SVM approach for predicting LogP. Mol. Diversity, 10(3), 301-309. doi:10.1007/s11030-006-9036-2 Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1), 3-25. doi:10.1016/S0169-409X(96)00423-1 Meylan, W. M., & Howard, P. H. (2000). Estimating log P with atom/fragments and water solubility with log P. Perspect. Drug Discovery Des., 19(1), 67-84. doi:10.1023/A:1008715521862 Molnár, L., Keserű, G. M., Papp, Á., Gulyás, Z., & Darvas, F. (2004). A neural network based prediction of octanol–water partition coefficients using atomic5 fragmental descriptors. Bioorg. Med. Chem. Lett., 14(4), 851-853. doi:10.1016/j.bmcl.2003.12.024 Moriguchi, I., Hirono, S., Liu, Q., Nakagome, I., & Matsushita, Y. (1992). Simple Method of Calculating Octanol/Water Partition Coefficient. CHEM. PHARM. BULL., 40(1), 127-130. doi:10.1248/cpb.40.127 Ojha, P. K., Mitra, I., Das, R. N., & Roy, K. (2011). Further exploring rm2 metrics for validation of QSPR models. Chemometrics Intell. Lab. Syst., 107(1), 194-205. doi:10.1016/j.chemolab.2011.03.011 Ranadive, S. A., Chen, A. X., & Serajuddin, A. T. M. J. P. R. (1992). Relative Lipophilicities and Structural-Pharmacological Considerations of Various Angiotensin-Converting Enzyme (ACE) Inhibitors. Pharm. Res., 9(11), 1480-1486. doi:10.1023/a:1015823315983 Roy, K., Mitra, I., Kar, S., Ojha, P. K., Das, R. N., & Kabir, H. (2012). Comparative Studies on Some Metrics for External Validation of QSPR Models. J. Chem Inf. Model., 52(2), 396-408. doi:10.1021/ci200520g Sangster, J. (1989). Octanol‐Water Partition Coefficients of Simple Organic Compounds. J. Phys. Chem. Ref. Data, 18(3), 1111-1229. doi:10.1063/1.555833 Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Netw., 61, 85-117. doi:10.1016/j.neunet.2014.09.003 Sheridan, R. P., Miller, M. D., Underwood, D. J., & Kearsley, S. K. (1996). Chemical Similarity Using Geometric Atom Pair Descriptors. J. Chem. Inf. Comput. Sci., 36(1), 128-136. doi:10.1021/ci950275b Teijeiro, S. A., Moroni, G. N., Motura, M. I., & Briñón, M. C. (2000). Lipophilic character of pyrimidinic nucleoside derivatives: correlation between shake flask, chromatographic (RP-TLC and RP-HPLC) and theoretical methods. J. Liq. Chromatogr. Relat. Technol., 23(6), 855-872. doi:10.1081/JLC-100101494 Tropsha, A., Gramatica, P., & Gombar, V. K. (2003). The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR Comb. Sci., 22(1), 69-77. doi:10.1002/qsar.200390007 Valkó, K. (2004). Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. Journal of Chromatography A, 1037(1), 299-310. doi:10.1016/j.chroma.2003.10.084 Willett, P. (2006). Enhancing the Effectiveness of Ligand-Based Virtual Screening Using Data Fusion. QSAR Comb. Sci., 25(12), 1143-1152. doi:10.1002/qsar.200610084 Willett, P. (2013). Combination of Similarity Rankings Using Data Fusion. J. Chem. Inf. Model., 53(1), 1-10. doi:10.1021/ci300547g
|