帳號:guest(3.147.58.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李明翰
作者(英文):Ming-Han Lee
論文名稱:利用階層式支持向量回歸法預測空腸的滲透率
論文名稱(英文):In Silico Prediction of Jejunum Permeability by Hierarchical Support Vector Regression
指導教授:梁剛荐
指導教授(英文):Max K. Leong
口試委員:翁慶豐
劉哲文
口試委員(英文):Ching-Feng Weng
Je-Wen Liou
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610512018
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:100
關鍵詞:腸道滲透率空腸單向腸道灌注法大鼠階層式支持向量回歸法定量構效關係生物藥物處置分類系統
關鍵詞(英文):Intestinal permeabilityJejunumSingle-pass intestinal perfusionRatHierarchical support vector regressionQSARBDDCS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
滲透率(Peff)對於口服藥物是很重要的因素,藥物在腸道的吸收跟滲透率有直接的影響。一般測量口服藥物在腸道的滲透率,主要是用活體內(in vivo)和試管內(in vitro)的方式來測量。活體內的測量方法,優點是實驗數據比較接近真實的情況,但缺點是花費的時間跟資源較多。試管內的測量方法,優點是效率比前者好,測量方式相對的較容易,但缺點是測量的情況跟實際上是有所差別的,導致可能有較大的誤差。因此,本實驗根據藥物在空腸(jejunum)的滲透率(Peff)進行定量分析,根據從1997年到2017年的文獻中收集大鼠的活體內測量實驗數據,透過使用回歸支持向量機產生電腦計算(in silico)模型預測口服藥物在腸道中的滲透率。本實驗所建立的HSVR模型對於藥物的預測和實驗上得到的數據有很好的表現。在training set中(n = 53, r2 = 0.93, q2cv = 0.84, RMSE = 0.17, s = 0.07),在test set中(n = 13, q2 = 0.75–0.85, RMSE = 0.26, s = 0.14),在outlier 中(n = 8, q2 = 0.78–0.92, RMSE = 0.19, s = 0.09)。根據這個HSVR模型,可以藉由收集數據,快速又準確的預測藥物的滲透率。而在生物藥物處置分類系統(BDDCS)中,使用分配係數與滲透率相近於原本用溶解度與代謝率的表現進而去幫助藥物設計。
Permeability is an important parameter for oral drugs. Intestinal absorption is Closely related to permeability in drugs. Generally speaking, oral drug intestinal permeability measured with two method, in vivo method and in vitro method. Pros of in vivo method are experiment data closer to the reality. Cons are need a lot of time and money. In contrast, Pros of in vitro method are efficient than the first one. Cons are large measurement deviation with unreal situation. An in silico model was produced to quantitatively the oral drug permeability using the hierarchical support vector regression (HSVR) scheme based on the in vivo rat experimental data collected from the literatures(1997-2017). The predictions by HSVR are in good performance with the experiment for those drugs in the training set (n = 53, r2 = 0.93, q2cv = 0.84, RMSE = 0.17, s = 0.07) and test set (n = 13, q2 = 0.75–0.85, RMSE = 0.26, s = 0.14) and outlier (n = 8, q2 = 0.78–0.92, RMSE = 0.19, s = 0.09). Thus, it can be asserted that HSVR can quickly and accurately predict the drug permeability. In addition, the derived model can be adopted as the preliminary metric to carry out biopharmaceutics drug disposition classification system (BDDCS).
TABLE OF CONTENTS………………………………….………………………………..….i
摘要……………………………………………………………………………………………ii
ABSTRACT…………………………………………………………………………………..iii
KEYWORDS…………………………………………………………………………………iii
TABLE………………………………………………………………………………………..iv
FUGURE…………………………………………………………………….………………..v
ABBREVIATIONS…………………………………………………………………………...vi
1. Introduction……………………….……………………………………………..………..1
2. Materials and methods………………………………….…………………………….…...3
2.1 Data compilation………………………………………………………….…..… 3
2.2 Data partition………………………………………………………………….…3
2.3 Structure and optimization………………………………………………………3
2.4 Hierarchical support vector regression…………………………………………..4
2.5 Predictive evaluations…………………………………………………………...5
3. Results………………………………………………………………………….…………9
3.1 Data partition……………………………………….………………….…………9
3.2 SVR………………………………………………………………………………9
3.3 HSVR…………………………………………………………………………...10
3.4 Predictive evaluations…………………………………………………………..11
3.5 Mock test………………………………………………………………………..12
4. Discussion……………………………………………………………………………….13
5. Conclusion……………………………………………………………………………….15
6. Reference…………………………………………………………………………...........17
7. Figure……………………………………………………………………………………23
8. Table……………………………………………………………………………………..51
Balimane Praveen V, Chong Saeho, Morrison Richard A. Current methodologies used for evaluation of intestinal permeability and absorption. J. Pharm. Toxicol. Methods. 2000;44(1):301-312
2. Drugs@FDA: FDA Approved Drug Products.
3. Wu Chi-Yuan, Benet Leslie Z. Predicting Drug Disposition via Application of BCS: Transport/Absorption/ Elimination Interplay and Development of a Biopharmaceutics Drug Disposition Classification System. Pharm. Res. 2005;22(1):11-23
4. Treuting Piper M, Arends Mark J, Dintzis Suzanne M. Upper Gastrointestinal Tract. Comparative Anatomy and Histology (Second Edition). 2017:191-211
5. Lennernas Hans. Human intestinal permeability. J. Pharm. Sci. 1998;87(4):403-410
6. Lennernas Hans, Ahrenstedt Orjan, Hallgren Roger, Knutso, Lars, Ryde Marta, Paalzow Lennart K. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm. Res. 1992;9(10):1243-1251
7. Komiya I, Park JY, Kamani A, Ho NFH, Higuchi WI. Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes. Int. J. Pharm. 1980;4(3):249-262
8. Tropsha Alexander. Best practices for QSAR model development, validation, and exploitation. Mol. Inf. 2010;20(6-7):476-488
9. Oja M, Maran U. Quantitative structure–permeability relationships at various pH values for acidic and basic drugs and drug-like compounds. SAR QSAR Environ. Res. 2015;26(7-9):701-719
10. Leong Max K, Chen Yen-Ming, Chen Tzu-Hsien. Prediction of human cytochrome P450 2B6-substrate interactions using hierarchical support vector regression approach. J. Comput. Chem. 2009;30(12):1899-1909
11. Xiao-Yan Chu, Gloria P. Sánchez-Castaño, Kazutaka Higaki, Doo-Man Oh, Cheng-Pang Hsu and Gordon L. Amidon. Correlation between Epithelial Cell Permeability of Cephalexin and Expression of Intestinal Oligopeptide Transporter. J. Pharmacol Exp. Ther. 2001; 299(2):575-582
12. Dahan Arik, Amidon Gordon L. Grapefruit juice and its constituents augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein. Pharm. Res. 2009; 26(4): 883-892
13. Dan-Dan Deng, Cai-Yun Liu, Zhi-Xin Liao, Jian-Ying Liang, Jian-Zhong Lu. Prediction of passive transport of 10 natural products by liposome-based fluorescence technique. Chin J Anal Chem. 2007;35(12):1696-1700
14. Fagerholm Urban, Johansson Monica, Lennernas Hans.Comparison between permeability coefficients in rat and human jejunum. Pharm. Res. 1996;13(9):1336-1342
15. Fang Lina, Wang Qiudi, Bi Kaishun, Zhao Xu.Simultaneous Determination of Procaspase Activating Compound 1 and Permeability Markers in Intestinal Perfusion Samples and Application to a Rat Intestinal Absorption Study. Chromatographia. 2016;79(23-24):1659-1663
16. Incecayir Tuba, Tsume Yasuhiro, Amidon Gordon L. Comparison of the permeability of metoprolol and labetalol in rat, mouse, and Caco-2 cells: use as a reference standard for BCS classification. Mol. Pharm. 2013;10(3):958-966
17. Jain Ritesh, Agarwal Sheetal, Mandava Nanda Kishore, Sheng Ye, Mitra Ashim K. Interaction of dipeptide prodrugs of saquinavir with multidrug resistance protein-2 (MRP-2): evasion of MRP-2 mediated efflux. Int. J. Pharm. 2008;362(1):44-51
18. Kang Myung J, Kim Hyung S, Jeon Ho S, Park Jong H, Lee Bong S, Ahn Byeong K, Moon Ki Y, Choi Young W. In situ intestinal permeability and in vivo absorption characteristics of olmesartan medoxomil in self-microemulsifying drug delivery system. Drug Dev. Ind. Pharm. 2012;38(5):587-596
19. Kim Jae-Seung, Mitchell Stefanie, Kijek Paul, Tsume Yasuhiro, Hilfinger John, Amidon Gordon L. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Mol. Pharmaceutics. 2006;3(6):686-694
20. Krondahl Eva, Orzechowski Achim, Ekstrom Gunilla, Lennernas Hans. Rat jejunal permeability and metabolism of μ-selective tetrapeptides in gastrointestinal fluids from humans and rats. Pharm. Res. 1997;14(12):1780-1785
21. Lindahl Anders, Sandstrom Rikard, Ungell Anna-Lena, Lennernas Hans. Concentration?and Region?dependent Intestinal Permeability of Fluvastatin in the Rat. J. Pharm. Pharmacol. 1998;50(7):737-744
22. Lindahl Anders, Persson Bengt, Ungell Anna-Lena, Lennernas Hans. Surface activity and concentration dependent intestinal permeability in the rat. Pharm. Res. 1999;16(1):97-102
23. Liu Yan, Hu Ming. Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. Drug Metab. Dispos. 2002;30(4):370-377
24. Liu Chunxi, Liu Donghua, Bai Fan, Zhang Jian, Zhang Na. In vitro and in vivo studies of lipid-based nanocarriers for oral N3-o-toluyl-fluorouracil delivery. Drug Deliv. 2010;17(5):352-363
25. Lozoya-Agullo Isabel, Zur Moran, Wolk Omri, Beig Avital, Gonzalez-Alvarez Isabel, Gonzalez-Alvarez Marta, Merino-Sanjuan Matilde, Bermejo Marival, Dahan Arik. In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination: Investigation of the single-pass vs. the Doluisio experimental approaches. Int. J. Pharm. 2015;480(1-2):1-7
26. Masaoka Yoshie, Tanaka Yusuke, Kataoka Makoto, Sakuma Shinji, Yamashita Shinji. Site of drug absorption after oral administration: Assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur. J. Pharm. Sci. 2006;29(3-4):240-250
27. Nagare N, Damre Anagha, Singh K, Mallurwar S, Iyer Seethalakshmi, Naik A, Chintamaneni, Meena. Determination of site of absorption of propranolol in rat gut using in situ single-pass intestinal perfusion. Indian J. Pharm. Sci. 2010;72(5):625
28. Ozawa Makoto, Tsume Yasuhiro, Zur Moran, Dahan Arik, Amidon Gordon L. Intestinal Permeability Study of Minoxidil: Assessment of Minoxidil as a High Permeability Reference Drug for Biopharmaceutics Classification. Mol. Pharmaceutics. 2014;12(1):204-211
29. Patel JR, Barve Kalyani H. Intestinal permeability of lamivudine using single pass intestinal perfusion. Indian J. Pharm. Sci. 2012;74(5):478-481
30. Shashikanth P, Mohan P Chandra, Karunakar K, Sagi SM Raviteja. Paclitaxel disposition studies using p-gp inhibtor & inducer by single pass intestinal perfusion in rats. Asian Journal of Pharmaceutical and Clinical Research. 2013;1(2):199-203
31. Steffansen Bente, Lepist Eve-Irene, Taub Mitchell E, Larsen Bjarne D, Frokjaer Sven, Lennernas Hans. Stability, metabolism and transport of d-Asp (OBzl)–Ala—a model prodrug with affinity for the oligopeptide transporter. Eur. J. Pharm. Sci. 1999;8(1):67-73
32. Stewart Barbra H, Chan O. Helen, Lu, Rosalind H, Reyner Eric L, Schmid Heidi L, Hamilton Harriet W, Steinbaugh Bruce A, Taylor Michael D. Comparison of Intestinal Permeabilities Determined in Multiple in Vitro and in Situ Models: Relationship to Absorption in Humans. 1995;12(5):693-699
33. Martin Todd M, Harten Paul, Young Douglas M, Muratov Eugene N, Golbraikh Alexander, Zhu Hao, Tropsha Alexander. Does rational selection of training and test sets improve the outcome of QSAR modeling? J. Chem Inf. Model. 2012;52(10):2570-2578
34. Golbraikh Alexander, Shen Min, Xiao Zhiyan, Xiao Yun-De, Lee Kuo-Hsiung, Tropsha Alexander. Rational selection of training and test sets for the development of validated QSAR models. J. Comput.-Aided Mol. Des. 2003;17(2-4):241-253
35. Kettaneh Nouna, Berglund Anders, Wold Svante. PCA and PLS with very large data sets. Comput. Stat. Data Anal. 2005;48(1):69-85
36. Burden Frank R, Ford Martyn G, Whitley David C, Winkler David A. Use of automatic relevance determination in QSAR studies using Bayesian neural networks. J. Chem. Inf. Comput. Sci. 2000;40(6):1423-1430
37. Demel Michael A, Kraemer Oliver, Ettmayer Peter, Haaksma Eric, Ecker Gerhard F. Ensemble Rule?Based Classification of Substrates of the Human ABC-Transporter ABCB1 Using Simple Physicochemical Descriptors. Mol. Inf. 2010;23(3):233-242
38. Cortes Corinna, Vapnik Vladimir. Support-vector networks. Mach. Learn. 1995;20(3):273-297
39. Burges, Christopher JC. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998;2(2):121-167
40. Ivanciuc O. Applications of support vector machines in chemistry. In: Kenny B. Lipkowitz, Thomas R. Cundari, Donald B. Boydm, editors. Reviews in computational chemistry: John Wiley & Sonc, Inc. 2007;23:291-400
41. Breiman Leo, Spector Philip. Submodel selection and evaluation in regression. The X-random case. Int. Stat. Rev. 1992;60(3):291-319
42. Witten Ian H, Frank Eibe, Hall Mark A, Pal Christopher J. Chapter 5 - Credibilit: Evaluating What's Been Learned. Data Mining: Practical machine learning tools and techniques (Fourth Edition). Morgan Kaufmann. 2016:161-202
43. Ojha Probir Kumar, Mitra Indrani, Das Rudra Narayan, Roy Kunal. Further exploring rm2 metrics for validation of QSPR models. Chemometrics Intell. Lab. Syst. 2011;107(1):194-205
44. Rucker Christoph, Rucker Gerta, Meringer Markus. y-Randomization and its variants in QSPR/QSAR. J. Chem Inf. Model. 2007;47(6):2345-2357
45. Roy Partha Pratim, Roy Kunal. On some aspects of variable selection for partial least squares regression models. QSAR Comb. Sci. 2008;27(3):302-313
46. Shi Leming M, Fang Hong, Ton, Weida, Wu Jie, Perkins Roger, Blair Robert M, Branham William S, Dial Stacy L, Moland Carrie L, Sheehan Daniel M. QSAR models using a large diverse set of estrogens. J. Chem. Inf. Comput. Sci. 2001;41(1):186-195
47. Schüürmann Gerrit, Ebert Ralf-Uwe, Chen Jingwen, Wang Bin, Ku-hne Ralph. External validation and prediction employing the predictive squared correlation coefficient Test set activity mean vs training set activity mean. J. Chem Inf. Model. 2008;48(11):2140-2145
48. Consonni Viviana, Ballabio Davide, Todeschini Roberto. Comments on the definition of the Q2 parameter for QSAR validation. J. Chem Inf. Model. 2009;49(7):1669-1678
49. Chirico Nicola, Gramatica Paola. Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem Inf. Model. 2011;51(9):2320-2335
50. Chirico Nicola, Gramatica Paola. Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J. Chem Inf. Model. 2012;52(8):2044-2058
51. Cherkasov Artem, Muratov Eugene N, Fourches Denis, Varnek Alexandre, Baskin Igor I, Cronin Mark, Dearden John, Gramatica Paola, Martin Yvonne C, Todeschini Roberto. QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 2014;57(12):4977-5010
52. Lennernas Hans. Regional intestinal drug permeation: Biopharmaceutics and drug development. Eur. J. Pharm. Sci. 2014;57(16):333-341
53. Broccatelli F, Salphati L, Plise E, Cheong J, Gobbi A, Lee M L, Aliagas I. Predicting Passive Permeability of Drug-like Molecules from Chemical Structure: Where Are We? Mol. Pharm. 2016;13(12):4199-4208
54. Egan William J, Lauri Georgio. Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 2002;54(3):273-289
55. Alex Alexander, Millan David S, Perez Manuel, Wakenhut Florian, Whitlock Gavin A. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. MedChemComm. 2011;2(7):669-674
56. Winiwarter Susanne, Ax Fredrik, Lennernas Hans, Hallberg Anders, Pettersson Curt, Karlen Anders. Hydrogen bonding descriptors in the prediction of human in vivo intestinal permeability. J. Mol. Graph. 2003;21(4):273-287
57. Meanwell Nicholas A. Improving Drug Candidates by Design: A Focus on Physicochemical Properties As a Means of Improving Compound Disposition and Safety. Chem. Res. Toxicol. 2011;24(9):1420-1456
58. Gerebtzoff Gregori, Seelig Anna. In silico prediction of blood? brain barrier permeation using the calculated molecular cross-sectional area as main parameter. J. Chem Inf. Model. 2006;46(6):2638-2650
59. Benet Leslie Z, Broccatelli Fabio, Oprea Tudor I. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519-547
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用階層式支持向量回歸法預測人體多藥轉運醣蛋白介導的外排率
2. 利用Hierarchical Support Vector Machine方法預測血腦障蔽的穿透能力
3. 使用Hierarchical Support Vector Regression方法預測血腦屏障的滲透表面積乘積
4. In Silico Prediction of Caco-2 Permeability by Quantitative Structure Activity Relationship Modeling Based on Hierarchical Support Vector Regression
5. 利用Pharmacophore Ensemble/Support Vector Machine方法預測ABCG2抑制劑結合親和力
6. 使用Hierarchical Support Vector Regression發展Quantiative Structure Activity Relationship模型預測芳香族硝基化合物的致突變
7. 使用Support Vector Machine發展 SVM-Pose/SVM-Score Ensemble Docking 應用於預測N-methyl-D-aspartate的生物 活性
8. 利用Pharmacophore Ensemble/Support Vector Machine方法預測Estrogen Receptor Alpha結合親和力
9. 利用不同的MachineLearning的方法去預測血腦障壁的穿透能力
10. 利用不同MachineLearningApproaches預測芳香族胺在沙門氏菌TA100中致癌/致突變的機率
11. 利用PharmacophoreEnsemble/SupportVectorMachineApproach預測人類多重藥物傳送蛋白P-Glycoprotein的抑制活性
12. 利用PharmacophoreEnsemble/SupportVectorMachine方法預測人類PregnaneXReceptor的活性化
13. 利用Hierarchical Support Vector Regression預測正辛醇 - 水分配係數
14. In Silico Prediction of n-Octanol–Water Partition Coefficient by Various Data Fusion Methods
15. 使用Pharmacophore Ensemble/Support Vector Machine (PhE/SVM)模型來預測Breast Cancer Resistance Protein (BCRP/ABCG2)的抑制
 
* *