帳號:guest(18.191.140.222)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:廖崇富
作者(英文):Chong-Fu Liao
論文名稱:木黴菌左旋胺基酸氧化酶與結球甘藍Chlorophyll a/b Binding Protein結合的鑑定與分析
論文名稱(英文):Identification and Characterization of Brassica oleracea var. capitata Chlorophyll a/b Binding Protein Bound to Trichoderma harzianum ETS 323 L-Amino Acid Oxidase
指導教授:彭國証
指導教授(英文):Kou-Cheng Peng
口試委員:彭國証
林國知
楊雪慧
口試委員(英文):Kou-Cheng Peng
Kuo-Chih Lin
Hsueh-Hui Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610513103
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:76
關鍵詞:木黴菌結球甘藍左旋胺基酸氧化酶Chlorophyll a/b binding protein抗性
關鍵詞(英文):TrichodermaBrassica oleraceaL-amino acid oxidaseChlorophyll a/b binding proteinresistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
木黴菌是環境中常見的生物防治劑,其作為生物防治劑的機制可能為分泌胞外蛋白質、次級代謝物及誘導植物抗病性。其中胞外蛋白質L-amino acid oxidase及次級代謝物chrysophanol已被證明具有促使甘藍生長及誘導甘藍產生抗性的相關作用。Trichoderma harzianum ETS 323分泌於細胞外的L-amino acid oxidase(Th-LAAO)對L-phenylalanine amino acid的催化能力最好,Th-LAAO具有抗細菌、拮抗植物病原真菌以及誘導甘藍產生抗性之相關活性;但是甘藍是否有相關表面受器與Th-LAAO結合導致此抗病機制及訊息傳遞目前我們仍不清楚。本研究利用親合管柱層析,Th-LAAO能與甘藍葉膜蛋白質Chlorophyll a/b binding protein結合。探討甘藍抗病下cab表現,將Th-LAAO貼附於甘藍葉表面後以灰黴菌感染,能增加cab表現比控制組增加約2.5倍;將cab轉殖於大腸桿菌表達之CAB(His6-CAB)貼附於甘藍葉表面,再以灰黴菌感染,cab表現比控制組下降約7倍;將His6-CAB與Th-LAAO以莫耳數比1:1混和置於甘藍葉面,隨後以灰黴菌感染,His6-CAB能拮抗Th-LAAO誘導甘藍抗性,使甘藍葉發病;經此拮抗作用後甘藍葉內之cab表現量則比控制組下降約10倍。上述各處理的甘藍葉發病面積比率與葉內cab表現量成反比,Th-LAAO處理發病面積為0-15%,His6-CAB處理發病面積為50-100 %,His6-CAB與Th-LAAO結合處理發病面積為70-100 %之間。再將Th-LAAO-Cy5.5處理在甘藍根部上,Th-LAAO-Cy5.5會往葉子輸送並進入葉綠體。本研究證明甘藍葉內葉綠體之膜蛋白質Chlorophyll a/b binding protein為T. harzianum ETS 323 L-amino acid oxidase結合標的,啟動甘藍抗灰黴菌能力。
T. harzianum ETS 323 is a well-known environmental biological control agent. Its mechanisms mainly contributes to production of extracellular proteins, secondary metabolites and resistance induction. Among these, L-amino acid oxidase and chrysophanol have been proven antibiotic activities and resistance induction of Brassica oleracea. The further interest would be to investigating binding proteins of the B. oleracea to ThLAAO. By using ThLAAO affiliated affinity chromatography, a 28.3 kDa ThLAAO binding membrane protein of B. oleracea was isolated and identified as Chlorophyll a/b binding protein. In the present of the ThLAAO, later infected with Botrytis cinerea, cab expression of B. oleracea leaf increase 2.5 folds, the cab of B. oleracea leaf that treated with His6-CAB later infection B. cinerea decreasing 7 folds. A mole ratio 1:1 of ThLAAO and His6-CAB mixture was applied to the B. oleracea leaf later infected with B. cinerea showing that His6-CAB can antagonize the ThLAAO resistance induction capability corresponding to decreasing cab expression 10 folds. The percentage of infection area of B. oleracea leaf were ThLAAO is 0 to 15 % His6-CAB is 50 to 100 % and ThLAAO mixture with His6-CAB is 70 to 100 %accordingly decrease cab expression, respectively. ThLAAO-Cy5.5 treated B. oleracea root showing that ThLAAO-Cy5.5 enter root and transport to the leaves where have been proven in chloroplast in other investigation. This study showed that B. oleracea chlorophyll a/b binding protein is the binding protein of T. harzianum ETS 323 L-amino acid oxidase that induces pathogen resistance.
致謝 i
中文摘要 ii
目錄 vi
1 前言 1
2 介紹 3
2.1 真菌的介紹 3
2.2 真菌的分類 3
2.3 真菌的應用 3
2.4 木黴菌的介紹 5
2.4.1 木黴菌的分類與特性 5
2.4.2 木黴菌的生物防治機制 6
2.4.3 木黴菌的次級代謝物 6
2.5 L-amino acid oxidase(LAAO) 6
2.5.1 木黴菌胞外蛋白質—左旋胺基酸氧化酶(ThLAAO) 7
2.6 Light-harvesting Chlorophyll a/b binding protein(CAB) 8
2.7 植物抗性 9
3 研究動機與目的 11
4 材料與方法 13
4.1 化學藥品 13
4.2 菌種、植物 13
4.3 菌種培養 13
4.4 ThLAAO製備 14
4.5 純化L-amino acid oxidase(ThLAAO) 14
4.6 聚丙烯硫胺膠體電泳 Sodium dodecylsulfate Polyacrylamid Gel Electrophoresis(SDS-PAGE) 15
4.7 抽取甘藍葉子膜蛋白 15
4.8 ThLAAO與甘藍膜蛋白作用分離 16
4.9 In gel digestion 16
4.10 LC-MS MS 17
4.11 甘藍葉 Totoal RNA 萃取 18
4.12 將mRNA反轉錄成cDNA 18
4.13 Real-time PCR即時聚合酶鏈鎖反應 19
4.13.1 QRT-PCR primer設計 19
4.14 建構重組甘藍 Chlorophyll a/b binding protein質體DNA於大腸桿菌BL-21表現載體 19
4.14.1 將Chlorophyll a/b binding protein質體DNA表現於Escherichia coli菌株DH5α 19
4.14.2 將質體移至pET28a載體系統上形成標記-His6 tag重組蛋白質 21
4.14.3 IPTG誘導大腸桿菌BL21-CAB表現His6-Chlorophyll a/b binding protein, His6-CAB 22
4.15 純化His6-CAB 23
4.16 ThLAAO和His6-CAB對甘藍抗性之實驗 23
4.17 ThLAAO標記Cy5.5 23
4.19 ThLAAO與His6-CAB interaction via pull down assay 24
5 實驗結果 27
5.1 菌種生長觀察 27
5.2 T. harzianum ETS 323與deactivated R. solani的菌絲共培養 27
5.3 蛋白質ThLAAO純化結果 27
5.4 甘藍葉膜蛋白質抽取結果 28
5.5 ThLAAO標記Cy5.5 處理甘藍根 28
5.6 大量表現重組蛋白質His6-CAB於大腸桿菌 29
5.7 ThLAAO與His6-CAB 交互作用結果 29
5.8 His6-CAB拮抗ThLAAO對甘藍葉抗病誘導 30
5.9 探討甘藍抗病下ThLAAO誘導甘藍2天後感染灰黴菌,cab mRNA q-PCR結果 30
6 討論 33
7 結論 39
8 參考文獻 41
9 圖表結果 49
10 附錄 59
1. Papavizas, G. C., Trichoderma and gliocladium: biology, ecology and potential for biocontrol. Annual Review of Phytopathology 1985, 23, 23-54.
2. Shu Ying Liu , C. K. L., Chaur Tsuen Lo, Hsueh Hui Yang, Kuo Chih Lin and Kou Cheng Peng, Chrysophanol is involved in the biofertilization and biocontrol activities of Trichoderma. Physiological and Molecular Plant Pathology 2016, 96, 1-7.
3. Posakony, E. H. D. a. J. W., Repetitive sequence transcrips in development. Nature 1982, 297, 633-35.
4. David S. Hibbett, M. B., Joseph F. Bischoff, Meredith Blackwell, Paul F. Cannon, Ove E. Eriksson, Sabine Huhndorf, Timothy James, Paul M. Kirk, Robert Lu¨Cking, H. Thorstenlumbsch, Francois Lutzoni, P. Brandon Matheny, David J. Mclaughlin, Martha J. Powell, Scott Redhead, Conrad L. Schoch, Joseph W. Spatafora, Joost A. Stalpers, Rytas Vilgalys, M. Catherine Aime, Andre´ Aptroot, Robert Bauer, Dominik Begerow, Gerald L. Benny, Lisa A. Castltbury, Pedro W. Crous, Yu-Cheng Dai, Walter Gams, David M. Geiser, Gareth W. Griffith, Ce´cile Gueidan, David L. Hawksworth, Geir Hestmark, Kentaro Hosaka, Richard A. Humber, Kevin D. Hyde, Joseph E. Ironside, Urmas Koljalg, Cletus P. Kurtzman, Karl-Henrik Larsson, Robert LichtwardtI, Joyce Longcore, Jolanta Mia˛ Dlikowska, Andrew Miller, Jean-Marc Moncalvo, Sharon Mozley-Standridge, Franz Oberwinkler, Erast Parmasto, Vale´rie Reeb, Jack D. Rogers, Claude Roux, Leif Ryvarden, Jose´ Paulo Sampaio, Arthur Schubler, Junta Sugiyama, R. Greg Thorn, Leif Tibell, Wendy A. Untereiner, Christopher Walker, Zheng Wang, Alex Weir, Michael Weiss, Merlin M. White, Katarina Winka, Yi-Jian Yao, Ning Zhasng., A higher-level phylogenetic classification of the Fungi. Mycological Research 2007, 111 (Pt 5), 509-47.
5. Michal Shoresh, G. E. H. a. F. M., Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 2010, 48, 21-43.
6. Matteo Lorito, C. P., Christopher K. Hayes and Gary E. Harman, Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 1994, 140, 623-29.
7. Jarvis, W. R., The infection of strawberry and raspberry fruits by Botrytis cinerea Fr. Annals of Applied Biology 1962, 50, 569-75.
8. Marie Laure Desprez Loustau, C. c. R., Marc Bue´e, Re´ gis Courtecuisse, Jean Garbaye, Fre´de´ ric Suffert, Ivan Sache and David M. Rizzo, The fungal dimension of biological invasions. Trends in Ecology Evolution 2007, 22 (9), 472-80.
9. Mercedes Cueto, P. R. J., Chris Kauffman, William Fenical, Emil Lobkovsky and Jon Clardy, Pestalone, a New Antibiotic Produced by a Marine Fungus in Response to Bacterial Challenge. Journal of natural products 2001, 64, 1444-46.
10. Sivasithamparam, E. L. G. a. K., Antifungal antibiotics produced by Trichoderma spp. Soil Biology and Biochemistry 1991, 23, 1011-20.
11. Lea Atanasova, I. S. D., Review: Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 2010, 11 (3), 151-68.
12. Clelton A. Santos, J. A. F. F., Anthonia O’Donovan, Vijai K. Gupta, Maria G. Tuohy, and Anete P. Souza, Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation. Microbial Cell Factories 2017, 16 (1), 83-93.
13. Masao Koyama, K. T., Ting-Chao Chou, Zbigniew Darzynkiewicz, Jan Kapuscinski, T. Ross Kelly, and Kyoichi A. Watanabe, Intercalating Agents with Covalent Bond Forming Capability. A Novel Type of Potential Anticancer Agents. 2.1 Derivatives of Chrysophanol and Emodin. Journal of Medicinal Chemistry 1989, 32, 1594-99.
14. Barbara H. Bowman, J. W. T., Alan G. Brownlee, Jean Lee, Shi-Da Lu and Thomas J. White, Molecular Evolution of the Fungi Relationship of the Basidiomycetes, Ascomycetes, and Chytridiomycetes. Molecular Biology and Evolution 1992, 9(2), 285-96.
15. Samuels, G. J., Trichoderma: systematics, the sexual state and ecology. Phytopathology 2006, 96 (2), 195-206.
16. Gary E.Harman, C. R. H., Ada Viterbo, Ilan Chet, and Matteo Lorito, Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2004, 2 (1), 43-56.
17. Priscila Chaverri, L. A. C., Barrie E. Overton and Gary J. Samuels, Hypocrea/Trichoderma: species with conidiophore elongations and green conidia. Mycologia 2017, 95 (6), 1100-40.
18. Shu-Ying Liu, C.-T. L., Chinpiao Chen, Ming-Yih Liu and Kou-Cheng Peng, Efficient isolation of anthraquinone-derivatives from Trichoderma harzianum ETS 323. Journal of Biochemical and Biophysical Methods 2007, 70 (3), 391-95.
19. Tahía Benítez, A. M. R., M. Carmen Limón and Antonio C. Codón, Biocontrol mechanisms of Trichoderma strains. International microbiology 2004, 7, 249-60.
20. Ada Viterbo, A. W., Yariv Brotman, Ilan Chet and Charles Kenerley, The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Molecular Plant Pathology 2007, 8 (6), 737-46.
21. I. Yedidia, N. B. a. I. C., Induction of Defense Responses in Cucumber Plants (Cucumis sativus L.) by the Biocontrol Agent Trichoderma harzianum. In Applied and Environmental Micrology, 1999; 65, 1061–70.
22. Marthandam Asokan Shibu, H.-S. L., Hsueh-Hui Yang and Kou-Cheng Peng, Trichoderma harzianum ETS 323-mediated resistance in Brassica oleracea var. capitata to Rhizoctonia solani involves the novel expression of a glutathione S-transferase and a deoxycytidine deaminase. J Agric Food Chem 2012, 60 (43), 10723-32.
23. Shu-Ying Liu, C.-T. L., Marthandamasokan Shibu, Yann-Lii Leu, Bo-Yuan Jen, and Kou-Cheng Peng, Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. Journal of Agricultural and Food Chemistry 2009, 57 (16), 7288-92.
24. Leobardo Serrano-Carre´on, C. F., Blanca Rodr´ıguez and Enrique Galindo, Rhizoctonia solani, an elicitor of 6-pentyl-α-pyrone production by Trichoderma harzianum in a two liquid phases, extractive fermentation system. Biotechnology Letters 2004, 26, 1403-06.
25. F. Vinale , K. S., E.L. Ghisalberti, R. Marra, M.J. Barbetti, H.Li, S.L. Woo and M. Lorito, A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology 2008, 72 (1-3), 80-86.
26. A. Ei-Hasan, F. W., J. Schöne and H. Buchenauer, Antagonistic effect of 6-pentyl-alpha-pyrone produced by Trichoderma harzianum toward Fusarium moniliforme. Journal of Plant Diseases and Protection 2007, 114 (2), 62–8.
27. Berkel, V. J. a. W. J. v., Flavoenzymes. Current Opinion in Chemical Biology 2007, 11 (2), 195-202.
28. Peter D. Pawelek, J. C., Rene Coulombe, Peter Macheroux, Sandro Ghisla and Alice Vrielink The structure of L-amino acid oxidase reveals the substrate trajectory into enantiomerically conserved active site. The EMBO Journal 2000, 19, 4204-15.
29. Mi Yong Ahn, B. M. L. a. Y. S. K., Characterization and Cytotoxicity of L-Amino Acid Oxidase from the Venom of King Cobra (Ophiopkagus hannah). The International Journal of Biochemistry and Cell Biology 1997, 29, 911-19.
30. Loredano Pollegioni, P. M. a. G. M., L-amino acid oxidase as biocatalyst: a dream too far? Applied Microbiology and Biotechnology 2013, 97 (21), 9323-41.
31. Ruijun Li, Y. H., Yanqi Gao, Shibo Jin and Anxing Li, Immune defense enzymes: Advances in L-amino acid oxidase of marine animals. Aquaculture Research 2018, 49 (6), 2085-90.
32. Chia-Ann Yang, C.-H. C., Chaur-Tsuen Lo, Shu-Ying Liu, Jeng-Woei Lee and Kou-Cheng Peng, A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. J Agric Food Chem 2011, 59 (9), 4519-26.
33. Chia-Ann Yang, C.-H. C., Jeng-Woei Lee, Chaur-Tsuen Lo, Shu-Ying Liu and Kou-Cheng Peng, Monomeric L-amino acid oxidase-induced mitochondrial dysfunction in Rhizoctonia solani Reveals a novel antagonistic mechanism of Trichoderma harzianum ETS 323. J Agric Food Chem 2012, 60 (10), 2464-71.
34. Chi-Hua Cheng, C.-A. Y., Shu-Ying Liu, Chaur-Tsuen Lo, Kou-Cheng Peng., L-amino acid oxidase-induced apoptosis in filamentous Botrytis cinerea. Analytical Biochemistry 2012, 420 (1), 93-5.
35. Chi-Hua Cheng, C.-A. Y., Shu-Ying Liu, Chaur-Tsuen Lo, Fang-Chin Liao, Hsiou-Chen Huang and Kou-Cheng Peng, Cloning of a novel L-amino acid oxidase from Trichoderma harzianum ETS 323 and bioactivity analysis of overexpressed L-amino acid oxidase. Journal of Agricultural and Food Chemistry 2011, 59 (17), 9142-49.
36. D. J. Kyle, L. A. S. a. C. J. a., Lateral Mobility of the Light-Harvesting Complex in Chloroplast Membranes Controls Excitation Energy Distribution in Higher Plants. Archives of Biochemistry and Biophysics.
1983, 222, 527-41.
37. Ryutaro Tokutsu , H. T., Yuichiro Takahashi , Taka-aki Ono and Jun Minagawa The Light-Harvesting Complex of Photosystem I in Chlamydomonas reinhardtii: Protein Composition, Gene Structures and Phylogenic Implications. Plant Cell Physiology 2004, 45, 138-45.
38. Jansson, S., The light-harvesting chlorophyll a /b-binding proteins. Biochimica et Biophysica Acta 1994, 1184, 1-19.
39. Palm, D. M. A., A. Averesch, V. Girr, P. Werwie, M. Takahashi, S. Satoh, H. Jaenicke, E. Paulsen, H., Chlorophyll a/b binding-specificity in water-soluble chlorophyll protein. Nature Plants 2018, 4 (11), 920-29.
40. Archer, J. B. a. M. D., P680, the primary electron donor of photosystem II. Journal of Photochemistry and Photobiology A: Chemistry 2001, 142, 97-106.
41. Boekema, J. P. D. a. E. J., Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 2005, 1706 (1-2), 12-39.
42. Nhan C. Dang, V. Z., Mike Reppert, Bhanu Neupane, Rafael Picorel, Michael Seibert, and Ryszard Jankowiak, The CP43 Proximal Antenna Complex of Higher Plant Photosystem II Revisited: Modeling and Hole Burning Study. I. The journal of Physical Chemistry B 2008, 112, 9921-33.
43. Pospíšil, P., Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim Biophys Acta 2012, 1817 (1), 218-31.
44. Vera Göhre, A. M. E. J., Jan Sklenář, Silke Robatzek and Andreas P. M. Weber, Molecular Crosstalk Between PAMP-Triggered Immunity and Photosynthesis. Molecular Plant-Microbe Interactions 2012, 25, 1083-92.
45. Marc Ongena, E. J., Akram Adam, Michel Paquot, Alain Brans, Bernard Joris, Jean-Louis Arpigny and Philippe Thonart Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology 2007, 9 (4), 1084-90.
46. L. C. van Loon, P. A. H. M. B. a. C. M. J. P., systemic resistance induced by rhizosphere bacteria. 1998, 36, 453-83.
47. Corné M J Pieterse, A. L.-R., Sjoerd Van der Ent and Saskia C M Van Wees, Networking by small-molecule hormones in plant immunity. Nature chemical biology 2009, 5 (5), 308-16.
48. Jan Sels, J. M., Barbara M.A. De Coninck, Bruno P.A. Cammue and Miguel F.C. De Bolle, Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 2008, 46 (11), 941-50.
49. Mireille Chevallet, S. L. a. T. R., Silver staining of proteins in polyacrylamide gels. Nature Protocols 2007, 1 (4), 1852-58.
50. Nadine Dyballa, S. M., Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. Journal of Visualized Experiments 2009, 30, 1-4.
51. Annelies Vertommen , B. P., Rony Swennen and Sebastien Christian Carpentier, Evaluation of chloroform/methanol extraction to facilitate the study of membrane proteins of non-model plants. International Journal of Plant Biology 2010, 231, 1113-25.
52. Andrej Shevchenko, H. T., Jan Havlis, Jesper V Olsen and Matthias Mann, In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols 2006, 1 (6), 2856-60.
53. Daisuke Kurihara, Y. M., Yoshikatsu Sato and Tetsuya Higashiyama, ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 2015, 142 (23), 4168-79.
54. Hsin-Chiao Yu, Establishing transgenic tobacco plants expressing L-amino acid oxidases of Trichoderma harzianum and testing their antimicrobial effects. 2013, Master thesis, National Dong Hwa University, Taiwan
55. S. L. Woo, F. S., M. Ruocco and M. Lorito, The Molecular Biology of the Interactions Between Trichoderma spp., Phytopathogenic Fungi, and Plants. Phytopathology 2006, 96, 181-85.
56. Jong Min Baek, C. R. H. a. C. M. K., The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Current Genetics 1999, 35, 41-50.
57. M. Rey, J. D. J. a. T. B., Improved antifungal activity of a mutant of Trichoderma harzianum CECT 2413 which produces more extracellular proteins. Applied Microbiology and Biotechnology 2001, 55, 604-08.
58. Chi Hua Cheng, B. N. S., Qian Wen Shang, Li Yu Daisy Liu, Kou Cheng Peng, Yan Huey Chen, Fang Fang Chen, Sin Fen Hu, Yu Tai Wang, Hao Ching Wang, Hsin Yi Wu, Chaur Tsuen Lo and Shih-Shun Lin, Gene-to-Gene Network Analysis of the Mediation of Plant Innate Immunity by the Eliciting Plant Response-Like 1 (Epl1) Elicitor of Trichoderma formosa. Molcule Plant Microbe Interaction 2018, 31 (7), 683-91.
59. Chetan Keswani, S. M., Birinchi Kumar Sarma, Surya Pratap Singh and Harikesh Bahadur Singh, Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology 2014, 98 (2), 533-44.
60. Walter A. Vargas, S. D., Serenella A. Sukno and Charles M. Kenerley, Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J Biol Chem 2008, 283 (28), 19804-15.
61. Chao-Chi Lin, Establishing transgenic tobacco plants expressing biological control related proteins of Trichoderma harzianum and testing their antimicrobial effect. 2018, Master thesis, National Dong Hwa University, Taiwan.
62. Shinichi Torii, M. N., and Takashi Tsuruo, Apoxin I, a Novel Apoptosis-inducing Factor with L-Amino Acid Oxidase Activity Purified from Western Diamondback Rattlesnake Venom. The Journal of Biological Chemistry 1997, 272, 9539-42.
63. Yoshinori Abe, Y. S., Hiroshi Munakata, Junko Ito, Nobuyuki Nagata and Kenzo Ohtsuki, Characterization of an apoptosis-inducing factor in Habu snake venom as a Glycyrrhizin (GL)-Binding Protein Potently Inhibited by GL in Vitro. Biological and Pharmaceutical Bulletin 1998, 21, 924-27.
64. Raquel de Melo Alves Paiva, R. d. F. F., Gilmara Ausech Antonucci, Helder Henrique Paiva, Maria de Lourdes Pires Bianchi, Kelly C. Rodrigues, Rodrigo Lucarini, Renato Cesar Caetano, Rosemeire Cristina Linhari Rodrigues Pietro, Carlos Henrique Gomes Martins, Sérgio de Albuquerque and Suely Vilela Sampaio Cell cycle arrest evidence, parasiticidal and bactericidal properties induced by L-amino acid oxidase from Bothrops atrox snake venom. Biochimie 2011, 93 (5), 941-47.
65. Zhao Yan Li, T. F. Y. a. E. C. Y. L., Purification and Characterization of L-amino acid oxidase from king cobra (Ophiophagus hannah) venom and its effects on human platelet aggregation. Toxicon 1994, 32, 1349-58.
66. Chi Hua Cheng, C. A. Y., and Kou Cheng Peng, Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Phytopathology 2012, 102 (11), 1054-63.
67. Paulsen, H., Chlorophyll a/b binding proteins. Photochemistry and Photobiology 1995, 62, 367-82.
68. Gabriela R. C. Villeth, L. S. T. C., Luciano Paulino Silva, Mateus Figueiredo Santos, Osmundo Brilhante de Oliveira Neto, Maria Fatima Grossi-de-Sa, Igor Sousa Ribeiro, Suelen Nogueira Dessaune, Rodrigo Rocha Fragoso, Octavio L. Franco and Angela Mehta, Identification of proteins in susceptible and resistant Brassica oleracea responsive to Xanthomonas campestris pv. campestris infection. Journal of Proteomics 2016, 143, 278-85.
69. Dong, Y. G. a. X., Stromules: Signal Conduits for Plant Immunity. Developmental Cell 2015, 34 (1), 3-4.
70. Hexon Angel Contreras-Cornejo, L. M. ı.-R. ı., Ek del-Val and John Larsen, Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology 2016, 92 (4), 1-17.
71. Sagan, C. B. a. S., Cell-penetrating peptides: 20 years later, where do we stand? The FEBS Journal 2013, 587 (12), 1693-702.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *