帳號:guest(3.135.196.63)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:張瑋璞
作者(英文):Wai Pok Theodore Cheung
論文名稱:宿主熱休克蛋白質60對日本腦炎病毒複製之功能和細胞存活分析
論文名稱(英文):Functional analysis of host HSP60 in Japanese Encephalitis virus replication and cell survival
指導教授:張瑞宜
指導教授(英文):Ruey-Yi Chang
口試委員:蘇玟珉
劉瑞雰
口試委員(英文):Wen-Min Su
Ruey-Fen Liu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610513107
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:37
關鍵詞:日本腦炎病毒病毒熱休克蛋白質60蛋白質細胞存活病毒複製
關鍵詞(英文):Japanese Encephalitis VirusVirusHSP60proteincell survivalVirus replication
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
日本腦炎病毒(Japanese encephalitis Virus,簡稱JEV)屬於黃質屬的病毒,是引起人類腦炎的主要因子。病毒需利用許多宿主蛋白質以完成其生活史,本實驗室之前研究顯示,利用蛋白質體表現分析時發現在日本腦炎病毒感染的宿主細胞中,熱休克蛋白質60 (Heat shock protein 60,簡稱HSP60)表現量會下降,其在JEV生活史中扮演何種功能仍屬未知。本論文進一步利用西方轉印法證明日本腦炎病毒感染確實會抑制HSP60表現。此外,過量表現HSP60會幫助病毒NS5蛋白質的轉譯,而利用基因靜默法抑制HSP60表現時則會抑制病毒NS5蛋白質的表現。分析病毒的力價,發現不論增加或降低NS5蛋白質的表現對於病毒力價皆未有顯著影響。細胞存活率實驗分析結果發現,抑制HSP60表現的細胞在病毒感染後之存活率顯著下降,證明HSP60對細胞存活有其必要性。利用免疫螢光染色法證明JEV感染會引致細胞質內部分之HSP60進入細胞核。同時HSP60和病毒蛋白質NS5及prM/E有共定位的現象。利用3D活細胞顯微鏡觀察病毒感染活細胞的胞器形態,發現在抑制HSP60表現的細胞,於病毒感染後會出現較短小的粒線體,並減少病毒感染引起合胞體的數量。總括而言,本論文結果說明宿主蛋白質HSP60在日本腦炎病毒生活史中扮演重要的功能。
Japanese Encephalitis Virus (JEV) belongs to Family of flaviviridae and is a causative agent for human encephalitis. Completion of viral life cycle relies on host factors. Previous studies in our laboratory have shown the reduction of host heat shock protein 60 (HSP60) in JEV-infected cells using proteomics methods. However, function of HSP60 involved in JEV life cycle remains unclear. In this study, the reduction of HSP60 was further verified using western blot analysis. Overexpression of HSP60 in JEV-infected cells led to an increase of viral non-structural protein 5 (NS5, encoding RNA-dependent RNA polymerase). Accordingly, knocking down of HSP60 impaired viral NS5 translation. Elevation or reduction of NS5 proteins has no significant effect on virus titers. Knocking down of HSP60 in JEV-infected cells significantly reduced survival cells indicating that HSP60 is important for cell viability. Immunofluorescence assay showed that infection of JEV promotes HSP60 nuclear localization. Furthermore, HSP60 colocalized with viral NS5, and structural proteins (prM/E) in JEV-infected cells. Subcellular morphology change including shorter dynamics mitochondria and less JEV-induced syncytia were observed in the HSP60-knockdown cells under Nanolive’s 3D live cell microscope. Taken together, these results provide new insights of HSP60 into virus-host interaction in JEV life cycle.
Chapter 1. INTRODUCTION 1
1. Japanese encephalitis 1
2. Japanese encephalitis virus genome 1
3. Flavivirus life cycle 2
4. Identification of heat shock protein 60 4
5. Aim of this study 6
Chapter 2. MATERIAL AND METHODS 7
1. Cells lines and virus strain 7
2. Preparation of virus stocks 7
3. Transfection 8
4. Western blotting 8
5. RNA interference 10
6. Plaque assay 10
7. Immunofluorescence assay 11
8. Cell morphology assay 12
9. Cell viability assay 12
Chapter 3. RESULTS 15
1. JEV infection caused downregulation of HSP60 proteins 15
2. Overexpression of recombinant HSP60 facilitates NS5 translation 15
3. Knocking down HSP60 expression impairs NS5 translation 17
4. HSP60 plays a role in cell survival upon JEV infection
18
5. HSP60 redistributed into nucleus and colocalized with viral proteins upon JEV infection 19
6. Downregulation of HSP60 enhances JEV induced mitochondrial damage 19
Chapter 4 DISCUSSION
1. HSPs play crucial roles for viral life cycle 21
2. 2. JEV infection or knocking down of HSP60 induces cell death 22
3. JEV infection causes redistribution of HSP60 in the infected cells 23
4. JEV infection downregulates HSP60 and induces mitochondrial damage 24
Chapter 5. REFERENCES 27
Tables 30
Figures 31



1. Campbell, G.L., et al., Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ, 2011. 89(10): p. 766-74, 774A-774E.
2. Solomon, T., et al., Japanese encephalitis. J Neurol Neurosurg Psychiatry, 2000. 68(4): p. 405-15.
3. Misra, U.K. and J. Kalita, Overview: Japanese encephalitis. Prog Neurobiol, 2010. 91(2): p. 108-20.
4. Erlanger, T.E., et al., Past, present, and future of Japanese encephalitis. Emerg Infect Dis, 2009. 15(1): p. 1-7.
5. Solomon, T., et al., Origin and evolution of Japanese encephalitis virus in southeast Asia. J Virol, 2003. 77(5): p. 3091-8.
6. Unni, S.K., et al., Japanese encephalitis virus: from genome to infectome. Microbes Infect, 2011. 13(4): p. 312-21.
7. Hammon, W.M., et al., Isolation From Wild Bird Mites (Liponyssus sylviarum) of a Virus or Mixture of Viruses From Which St. Louis and Western Equine Encephalitis Viruses Have Been Obtained. Science, 1948. 107(2769): p. 92-3.
8. Fiil, A., Follicle cell bridges in the mosquito ovary: syncytia formation and bridge morphology. J Cell Sci, 1978. 31: p. 137-43.
9. Lindenbach, B.D. and C.M. Rice, Molecular biology of flaviviruses. Adv Virus Res, 2003. 59: p. 23-61.
10. Bukau, B., J. Weissman, and A. Horwich, Molecular chaperones and protein quality control. Cell, 2006. 125(3): p. 443-51.
11. Hartl, F.U. and M. Hayer-Hartl, Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 2002. 295(5561): p. 1852-8.
12. Young, J.C., et al., Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol, 2004. 5(10): p. 781-91.
13. Garrido, C., et al., Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun, 2001. 286(3): p. 433-42.
14. Masser, A.E., et al., Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1. Elife, 2019. 8.
15. Ali, A., et al., HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol, 1998. 18(9): p. 4949-60.
16. Kijima, T., et al., HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Sci Rep, 2018. 8(1): p. 6976.
17. Zolkiewski, M., T. Zhang, and M. Nagy, Aggregate reactivation mediated by the Hsp100 chaperones. Arch Biochem Biophys, 2012. 520(1): p. 1-6.
18. Nain, M., et al., GRP78 Is an Important Host Factor for Japanese Encephalitis Virus Entry and Replication in Mammalian Cells. J Virol, 2017. 91(6).
19. Mukherjee, S., et al., Japanese encephalitis virus induces human neural stem/progenitor cell death by elevating GRP78, PHB and hnRNPC through ER stress. Cell Death Dis, 2017. 8(1): p. e2556.
20. Pujhari, S., et al., Heat shock protein 70 (Hsp70) mediates Zika virus entry, replication, and egress from host cells. Emerg Microbes Infect, 2019. 8(1): p. 8-16.
21. Wang, R.Y., et al., DnaJ homolog Hdj2 facilitates Japanese encephalitis virus replication. Virol J, 2011. 8: p. 471.
22. Fongsaran, C., et al., Voltage dependent anion channel is redistributed during Japanese encephalitis virus infection of insect cells. ScientificWorldJournal, 2014. 2014: p. 976015.
23. Singh, B., et al., Mitochondrial import of the human chaperonin (HSP60) protein. Biochem Biophys Res Commun, 1990. 169(2): p. 391-6.
24. Zeilstra-Ryalls, J., O. Fayet, and C. Georgopoulos, The universally conserved GroE (Hsp60) chaperonins. Annu Rev Microbiol, 1991. 45: p. 301-25.
25. Itoh, H., et al., Mammalian 60-kDa stress protein (chaperonin homolog). Identification, biochemical properties, and localization. J Biol Chem, 1995. 270(22): p. 13429-35.
26. Chandra, D., G. Choy, and D.G. Tang, Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem, 2007. 282(43): p. 31289-301.
27. Xanthoudakis, S., et al., Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J, 1999. 18(8): p. 2049-56.
28. Tanaka, Y., et al., Interaction of the hepatitis B virus X protein (HBx) with heat shock protein 60 enhances HBx-mediated apoptosis. Biochem Biophys Res Commun, 2004. 318(2): p. 461-9.
29. Tsai, K.N., et al., Defective interfering RNAs of Japanese encephalitis virus found in mosquito cells and correlation with persistent infection. Virus Res, 2007. 124(1-2): p. 139-50.
30. Padwad, Y.S., et al., RNA interference mediated silencing of Hsp60 gene in human monocytic myeloma cell line U937 revealed decreased dengue virus multiplication. Immunobiology, 2009. 214(6): p. 422-9.
31. Park, S.G., S.M. Lee, and G. Jung, Antisense oligodeoxynucleotides targeted against molecular chaperonin Hsp60 block human hepatitis B virus replication. J Biol Chem, 2003. 278(41): p. 39851-7.
32. Manzoor, R., et al., Heat shock protein 70 modulates influenza A virus polymerase activity. J Biol Chem, 2014. 289(11): p. 7599-614.
33. Rizzo, M., et al., Heat shock protein-60 and risk for cardiovascular disease. Curr Pharm Des, 2011. 17(33): p. 3662-8.
34. Kang, S.M., et al., Interaction of hepatitis C virus core protein with Hsp60 triggers the production of reactive oxygen species and enhances TNF-alpha-mediated apoptosis. Cancer Lett, 2009. 279(2): p. 230-7.
35. Breloer, M., et al., Heat shock proteins as "danger signals": eukaryotic Hsp60 enhances and accelerates antigen-specific IFN-gamma production in T cells. Eur J Immunol, 2001. 31(7): p. 2051-9.
36. Gupta, S. and A.A. Knowlton, HSP60, Bax, apoptosis and the heart. J Cell Mol Med, 2005. 9(1): p. 51-8.
37. Ko, S.H., L.M. Huang, and W.Y. Tarn, The Host Heat Shock Protein MRJ/DNAJB6 Modulates Virus Infection. Front Microbiol, 2019. 10: p. 2885.
38. Naito, T., et al., Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol, 2007. 81(3): p. 1339-49.
39. Cheng, M.Y., et al., Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature, 1989. 337(6208): p. 620-5.
40. Nanda, S.K., et al., Mitochondrial HSP70, HSP40, and HSP60 bind to the 3' untranslated region of the Murine hepatitis virus genome. Arch Virol, 2004. 149(1): p. 93-111.
41. Zhang, S.M., et al., HBx protein of hepatitis B virus (HBV) can form complex with mitochondrial HSP60 and HSP70. Arch Virol, 2005. 150(8): p. 1579-90.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *