帳號:guest(3.147.79.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:吳民安
作者(英文):Min-An Wu
論文名稱:微奈米尺度氧化鋅的光致螢光與激子放射
論文名稱(英文):Photoluminescence of Micro- and Nanoscale Zinc Oxide
指導教授:黃玉林
指導教授(英文):Yue-Lin Huang
口試委員:紀信昌
李信義
口試委員(英文):Hsin-Chang Chi
Hsin-Yi Lee
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610514206
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:70
關鍵詞:氧化鋅光致螢光激子微腔隨機雷射
關鍵詞(英文):Zinc OxidePhotoluminescenceExcitonsMicrocavityRandom Lasing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
本研究利用氧化鋅晶體極性切面(polar facets)的非等向性成長特性,形成含有一維奈米線光學微腔之半導體微奈米結構,改變製備條件以調控激子放射發光性質,討論可能的發光機制並評估其中的激子貢獻。本研究目標包含:(i)發展製備策略,以蒸氣傳輸(vapour-transport)法沉積微奈米尺寸氧化鋅,並調控光學微腔幾何;(ii)測定光致發光行為與樣品形貌幾何、樣品溫度以及激發強度的相關性;(iii)探討可能的發光機制。
In this study, the non-isotropic growth characteristics of the polar facets of zinc oxide crystals were used to form a semiconductor micro-nanostructure containing a one-dimensional nanowire optical microcavity, and the preparation conditions were changed to regulate the exciton emission properties. The luminescence mechanism and evaluate the exciton contribution. The objectives of this study include: (i) development of a preparation strategy for the deposition of micro-nano-sized zinc oxide by vapor transport and regulation of optical microcavity geometry; (ii) determination of photoluminescence behavior and sample morphology geometry, Correlation of sample temperature and excitation intensity; (iii) explore possible luminescence.
第1章 文獻回顧與問題研究. 1
1.1 鋅的性質與應用 2
1.2 氧化鋅奈米懸臂陣列 3
1.3 能隙結構與光致發光 5
1.4 微奈米尺度氧化鋅雷射 8
1.5 發光機制 8
1.6 微腔共振 11
1.7 微奈米尺度氧化鋅發光行為 13
1.8 研究動機 14
第2章. 實驗方法. 15
2.1雙加熱器統設計與架設. 15
2.2基板處理與實驗參數 16
2.2.1 儀器準備與基板處理 16
2.2.2 實驗流程 17
2.3室溫、變溫光致螢光(PL)量測系統架設 18
2.3.1儀器規格 18
2.3.2 室溫、變溫PL量測系統架設 19
第3章 實驗結果 22
3.1 製備條件與表面形貌 23
3.2 激發強度對螢光光譜的影響 (室溫大氣下觀察) 28
3.3 溫度對螢光光譜的影響(真空下觀察) 34
3.4 放射強度 44
3.5 螢光強度週期調變 48
第4章 結果與討論. 57
4.1 氧化鋅微奈米結構製備 57
4.2 發光機制 60
附錄A 自發放射與受激放射 67
附錄B 單根奈米梳分離實驗 68

1. Guillet, T.; Brimont, C., Polariton condensates at room temperature. C. R. Phys. 2016, 17 (8), 946-956. DOI: 10.1016/j.crhy.2016.07.002
2. Wang, Z. L.; Kong, X. Y.; Zuo, J. M., Induced growth of asymmetric nanocantilever arrays on polar surfaces. Physical Review Letters 2003, 91 (18), 4. DOI: 10.1103/PhysRevLett.91.185502
3. Zhang, Y. H.; Song, X. B.; Zheng, J.; Liu, H. H.; Li, X. G.; You, L. P., Symmetric and asymmetric growth of ZnO hierarchical nanostructures: nanocombs and their optical properties. Nanotechnology 2006, 17 (8), 1916-1921. DOI: 10.1088/0957-4484/17/8/019
4. Chen, Y. T.; Chen, Y. F., Enhanced random lasing in ZnO nanocombs assisted by Fabry-Perot resonance. Optics Express 2011, 19 (9), 8728-8734. DOI: 10.1364/oe.19.008728
5. Klingshirn, C., ZnO: From basics towards applications. Phys. Status Solidi B-Basic Solid State Phys. 2007, 244 (9), 3027-3073. DOI: 10.1002/pssb.200743072
6. Su, R.; Diederichs, C.; Wang, J.; Liew, T. C. H.; Zhao, J. X.; Liu, S.; Xu, W. G.; Chen, Z. H.; Xiong, Q. H., Room-Temperature Polariton Lasing in All-Inorganic Perovskite Nanoplatelets. Nano Letters 2017, 17 (6), 3982-3988. DOI: 10.1021/acs.nanolett.7b01956
7. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D., Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292 (5523), 1897-1899. DOI: 10.1126/science.1060367
8. Wille, M.; Sturm, C.; Michalsky, T.; Roder, R.; Ronning, C.; Schmidt-Grund, R.; Grundmann, M., Carrier density driven lasing dynamics in ZnO nanowires. Nanotechnology 2016, 27 (22), 7. DOI: 10.1088/0957-4484/27/22/225702
9. Choi, S.; Aharonovich, I., Zinc Oxide Nanophotonics. Nanophotonics 2015, 4 (4), 437-458. DOI: 10.1515/nanoph-2015-0023
10. Baek, H.; Hyun, J. K.; Chung, K.; Oh, H.; Yi, G. C., Selective excitation of Fabry-Perot or whispering-gallery mode-type lasing in GaN microrods. Applied Physics Letters 2014, 105 (20), 5. DOI: 10.1063/1.4902373
11. Cao, B. Q.; Sakai, K.; Nakamura, D.; Palani, I. A.; Gong, H. B.; Xu, H. Y.; Higashihata, M.; Okada, T., Stimulated Optical Emission from ZnO Nanobelts Grown with a Simple Carbothermal Evaporation Method. Journal of Physical Chemistry C 2011, 115 (5), 1702-1707. DOI: 10.1021/jp1097662
12. 洪聖傑, 反應式濺鍍氧化鋅之光致螢光放射 / Photoluminescence emission of reactively sputtered ZnO. 國立東華大學碩士論文 2018. DOI:
13. Dai, J.; Xu, C. X.; Nakamura, T.; Wang, Y. Y.; Li, J. T.; Lin, Y., Electron-hole plasma induced band gap renormalization in ZnO microlaser cavities. Opt. Express 2014, 22 (23), 28831-28837. DOI: 10.1364/oe.22.028831
14. Matsuzaki, R.; Soma, H.; Fukuoka, K.; Kodama, K.; Asahara, A.; Suemoto, T.; Adachi, Y.; Uchino, T., Purely excitonic lasing in ZnO microcrystals: Temperature-induced transition between exciton-exciton and exciton-electron scattering. Physical Review B 2017, 96 (12), 8. DOI: 10.1103/PhysRevB.96.125306
15. Klingshirn, C.; Hauschild, R.; Fallert, J.; Kalt, H., Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing. Phys. Rev. B 2007, 75 (11), 9. DOI: 10.1103/PhysRevB.75.115203
16. 謝至中, 反應式濺鍍氧化鋅的結構缺陷與發光性質/Structural disorders and luminescent properties of ZnO prepared by reactive sputtering. 國立東華大學碩士論文 2015. DOI:

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *