帳號:guest(3.144.116.22)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:蕭睿霆
作者(英文):Jui-Ting Hsiao
論文名稱:能源互聯網中的智慧可再生能源調度系統
論文名稱(英文):An intelligent renewables-based power scheduling system for Internet of Energy
指導教授:黃振榮
指導教授(英文):Chenn-Jung Huang
口試委員:王宇武
陳亮均
口試委員(英文):Yu-Wu Wang
Liang-Jun Chen
學位類別:博士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學號:610521230
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:52
關鍵詞:能源互聯網可再生能源電力調度數據挖掘最佳化
關鍵詞(英文):Internet of Energyrenewablespower schedulingdata miningoptimization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
新興技術的快速發展和太陽能與風力發電所帶來的成本大幅降低使得可再生能源發電在未來有望替代傳統的發電方法。然而,可再生能源與當前使用的集中式能源有所不同。前者被歸類為間歇性能源(intermittent energy),其能量供給是不穩定的。更重要的是,與集中式能源相比,可再生能源的規模是相對較小並且分散的。但在最近的文獻中,能源互聯網(Internet of Energy,IoE)的架構已被提出,其目的為在未來代替當前的智慧電網(smart grid)。然而在IoE中若有大量的能源產生,將伴隨著大量的能源消耗,同時還需考慮可再生能源的間歇性與電動車移動的不確定性,這將導致未來IoE的短期電力管理比傳統發電系統的電力管理複雜得多。

至今為止還沒有研究針對未來的IoE短期電力管理中的上述電力調度問題進行研究和討論,因此我們提出了基於IoE架構的次日(day ahead)電力調度系統,以解決這些複雜的能源管理問題。整個電力系統在一個階層式框架下分為不同的微電網,微電網首先收集家庭中智慧家電的電力消耗數據與可再生能源發電數據,然後負責管理微電網的能源路由器通過運用分散式可再生能源和電池儲存系統來為客戶進行用電力排程。此外,在上述過程中還執行了電力重新分配,使得能源路由器能將微電網中產生的多餘電力分配給其他面臨電力短缺的微電網,讓最大限度地利用分散式可再生能源與減少微電網的尖峰負載的兩件事能可以同時完成。實驗結果表明,本文提出的階層式次日功率調度系統可以有效緩解對傳統發電廠的依賴,並平衡電力市場中的尖峰期和非尖峰期負載。
The rapid development of emerging technologies and significant cost reductions offered by the utilization of solar energy and wind power have made it feasible to replace traditional power generation methods with renewable energy sources in the future. However, one thing that distinguishes renewables from currently deployed centralized power sources is that the former are categorized as intermittent energy sources. What's more, the scale of renewables is relatively small and their deployment could be described as scattered. In the recent literature, the architecture of the Internet of Energy has been proposed to replace the current smart grid in the future. However, the large volume of energy produced, the copious amounts of accompanying consumption data, and the uncertainty of the arrival times of electric vehicles and the intermittence nature of the renewable energy will result in the short-term energy management of the IoE in the future being much more complicated than the energy management of traditional power generation systems which still rely on centralized-control.

We thus propose a day-ahead power scheduling system based on the architecture of the IoE to tackle these complex energy management problems. The whole power system is divided into different geographical regions under a hierarchical framework. The microgrids first collect electricity consumption data from smart appliances used in households and data pertaining to the power generating capacity of renewable energy sources at the microgrid level. Then, the regional energy routers schedule the usage of electricity for the customers by considering the efficiency of the use of distributed renewables and the battery storage systems. Notably, a reallocation mechanism is presented in this work to allow the energy routers to allocate excess electricity generated in a microgrid to other microgrids facing power supply shortages, whereby the maximal usage of distributed renewables and a reduction of the burden on some microgrids during time periods of peak load can be simultaneously achieved. The experimental results show that the hierarchical day-ahead power scheduling system proposed in this work can mitigate the dependency on traditional power plants effectively and balance peak and off-peak period loads in an electricity market.
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究流程 5
第三節 論文架構 6
第二章 文獻探討 7
第一節 電力調度 7
第二節 電動車 8
第三節 能源互聯網 9
第三章 IoE的次日電力調度系統 11
第一節 系統環境 11
第二節 系統架構 13
第三節 高層區域能源路由器的次日電力調度 16
第四節 低層區域能源路由器的次日電力調度 18
第五節 電動車次日行程劃和充電檢查 23
第四章 即時次優化演算法 25
第五章 模擬結果與分析 27
第一節 模擬環境設定 27
第二節 實驗結果與分析 30
第六章 結論與未來工作 47
第一節 結論 47
第二節 未來工作 48
參考文獻 49
[1] Yan, B., Luh, P. B., Warner, G., & Zhang, P. (2017). Operation and design optimization of microgrids with renewables. IEEE Transactions on Automation Science and Engineering, 14(2), 573-585.
[2] Li, Z., & Xu, Y. (2018). Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes. Applied Energy, 210, 974-986.
[3] Wang, K., Gu, L., He, X., Guo, S., Sun, Y., Vinel, A., & Shen, J. (2017). Distributed energy management for vehicle-to-grid networks. IEEE Network, 31(2), 22-28.
[4] Zhou, K., Yang, S., & Shao, Z. (2016). Energy internet: the business perspective. Applied Energy, 178, 212-222.
[5] Wang, K., Yu, J., Yu, Y., Qian, Y., Zeng, D., & Guo, S. et al. (2017). A Survey on Energy Internet: Architecture, Approach, and Emerging Technologies. IEEE Systems Journal, 1-14.
[6] Wang, Y., Mao, S., & Nelms, R. M. (2015). On hierarchical power scheduling for the macrogrid and cooperative microgrids. IEEE Transactions on Industrial Informatics, 11(6), 1574-1584.
[7] Huang, Y., Mao, S., & Nelms, R. M. (2014). Adaptive electricity scheduling in microgrids. IEEE Transactions on Smart Grid, 5(1), 270-281.
[8] Hou, W., Tian, G., Guo, L., Wang, X., Zhang, X., & Ning, Z. (2017). Cooperative Mechanism for Energy Transportation and Storage in Internet of Energy. IEEE Access, 5, 1363-1375.
[9] Zhang, H., Li, Y., Gao, D. W., & Zhou, J. (2017). Distributed optimal energy management for energy internet. IEEE Transactions on Industrial Informatics, 13(6), 3081-3097.
[10] Rana, M. M. (2017). Architecture of the Internet of Energy Network: An Application to Smart Grid Communications. IEEE Access, 5, 4704-4710.
[11] Roh, H., & Lee, J. (2016). Residential Demand Response Scheduling With Multiclass Appliances in the Smart Grid. IEEE Transactions On Smart Grid, 7(1), 94-104.
[12] Ma, J., Chen, H. H., Song, L., & Li, Y. (2016). Residential load scheduling in smart grid: A cost efficiency perspective. IEEE Transactions on Smart Grid, 7(2), 771-784.
[13] Zhang, Y., Rahbari-Asr, N., Duan, J., & Chow, M. Y. (2016). Day-ahead smart grid cooperative distributed energy scheduling with renewable and storage integration. IEEE Transactions on Sustainable Energy, 7(4), 1739-1748.
[14] Zhang, X., Shahidehpour, M., Alabdulwahab, A., & Abusorrah, A. (2016). Hourly electricity demand response in the stochastic day-ahead scheduling of coordinated electricity and natural gas networks. IEEE Transactions on Power Systems, 31(1), 592-601.
[15] Hong, Y., Wang, S., & Huang, Z. (2017). Efficient energy consumption scheduling: Towards effective load leveling. Energies, 10(1), 105.
[16] Li, C., Yu, X., Yu, W., Chen, G., & Wang, J. (2017). Efficient computation for sparse load shifting in demand side management. IEEE Transactions on Smart Grid, 8(1), 250-261.
[17] Parisio, A., Wiezorek, C., Kyntäjä, T., Elo, J., Strunz, K., & Johansson, K. H. (2017). Cooperative MPC-based energy management for networked microgrids. IEEE Transactions on Smart Grid, 8(6), 3066-3074.
[18] Zhang, J., Wu, Y., Guo, Y., Wang, B., Wang, H., & Liu, H. (2016). A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints. Applied energy, 183, 791-804.
[19] Umeozor, E. C., & Trifkovic, M. (2016). Operational scheduling of microgrids via parametric programming. Applied Energy, 180, 672-681.
[20] Xing, H., Fu, M., Lin, Z., & Mou, Y. (2016). Decentralized optimal scheduling for charging and discharging of plug-in electric vehicles in smart grids. IEEE Transactions on Power Systems, 31(5), 4118-4127.
[21] Tang, W., & Zhang, Y. J. (2016). A model predictive control approach for low-complexity electric vehicle charging scheduling: optimality and scalability. IEEE Trans. Power Syst, 32(2), 1050-1063.
[22] Wang, R., Wang, P., & Xiao, G. (2016). Two-stage mechanism for massive electric vehicle charging involving renewable energy. IEEE Transactions on Vehicular Technology, 65(6), 4159-4171.
[23] Kang, Q., Wang, J., Zhou, M., & Ammari, A. C. (2016). Centralized charging strategy and scheduling algorithm for electric vehicles under a battery swapping scenario. IEEE Transactions on Intelligent Transportation Systems, 17(3), 659-669.
[24] Ghasemi, A., Mortazavi, S. S., & Mashhour, E. (2016). Hourly demand response and battery energy storage for imbalance reduction of smart distribution company embedded with electric vehicles and wind farms. Renewable Energy, 85, 124-136.
[25] Zhou, Z., Xiong, F., Huang, B., Xu, C., Jiao, R., Liao, B., ... & Li, J. (2017). Game-theoretical energy management for energy Internet with big data-based renewable power forecasting. IEEE Access, 5, 5731-5746.
[26] Huang, B., Li, Y., Zhang, H., & Sun, Q. (2016). Distributed optimal co-multi-microgrids energy management for energy internet. IEEE/CAA Journal of Automatica Sinica, 3(4), 357-364.
[27] Lin, C. C., Deng, D. J., Liu, W. Y., & Chen, L. (2017). Peak load shifting in the internet of energy with energy trading among end-users. IEEE Access, 5, 1967-1976.
[28] Zhang, H., Li, Y., Gao, D. W., & Zhou, J. (2017). Distributed optimal energy management for energy internet. IEEE Transactions on Industrial Informatics, 13(6), 3081-3097.
[29] Cao, Y., Kaiwartya, O., Wang, R., Jiang, T., Cao, Y., Aslam, N., & Sexton, G. (2017). Toward efficient, scalable, and coordinated on-the-move EV charging management. IEEE Wireless Communications, 24(2), 66-73.
[30] Hsu, S. H. (2017). U.S. Patent No. 9,816,832. Washington, DC: U.S. Patent and Trademark Office.
[31] Zhang, Y., Song, S., Shen, Z. J. M., & Wu, C. (2018). Robust Shortest Path Problem with Distributional Uncertainty. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1080-1090.
[32] Cao, Z., Jiang, S., Zhang, J., & Guo, H. (2017). A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion. IEEE transactions on intelligent transportation systems, 18(7), 1958-1973.
[33] Khooban, M. H., Vafamand, N., Niknam, T., Dragicevic, T., & Blaabjerg, F. (2017). Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model. IET Electric Power Applications, 11(5), 918-934.
[34] Ahmadian, A., Sedghi, M., & Aliakbar-Golkar, M. (2017). Fuzzy load modeling of plug-in electric vehicles for optimal storage and DG planning in active distribution network. IEEE Transactions on Vehicular Technology, 66(5), 3622-3631.
[35] Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on evolutionary computation, 8(3), 256-279.
[36] Mahmoodi, M., Shamsi, P., & Fahimi, B. (2013, November). Optimal scheduling of microgrid operation considering the time-of-use price of electricity. In Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE (pp. 2127-2132). IEEE.
[37] Zhou, B., Liu, X., Cao, Y., Li, C., Chung, C. Y., & Chan, K. W. (2016). Optimal scheduling of virtual power plant with battery degradation cost. IET Generation, Transmission & Distribution, 10(3), 712-725.
[38] Ratnam, E. L., Weller, S. R., Kellett, C. M., & Murray, A. T. (2017). Residential load and rooftop PV generation: an Australian distribution network dataset. International Journal of Sustainable Energy, 36(8), 787-806.
[39] Dowell, J., & Pinson, P. (2016). Very-short-term probabilistic wind power forecasts by sparse vector autoregression. IEEE Transactions on Smart Grid, 7(2), 763-770.
[40] Grantham, A., Gel, Y. R., & Boland, J. (2016). Nonparametric short-term probabilistic forecasting for solar radiation. Solar Energy, 133, 465-475.
[41] Li, M., & Zou, B. (2015, May). A Profile of charging/discharging loads on the grid due to electric vehicles under different price mechanisms. In Electronics and Electrical Engineering: Proceedings of the 2014 Asia-Pacific Electronics and Electrical Engineering Conference (EEEC 2014), December 27-28, 2014, Shanghai, China (p. 241). CRC Press.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *