帳號:guest(52.15.55.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳心懿
作者(英文):Hsin-I Chen
論文名稱:高穩定性色座標光萃取膜之製作與研究
論文名稱(英文):Manufacture and study of light-extraction films with highly stable CIE-indices
指導教授:魏茂國
指導教授(英文):Mao-Kuo Wei
口試委員:蔡永誠
陳素華
口試委員(英文):Yung-Chen Tsai
Su-Hua Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610522009
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:107
關鍵詞:有機發光二極體散射二氧化鋯效率
關鍵詞(英文):organic light-emitting diode (OLED)scatterzirconiaefficiency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
本論文主要研究製作應用於有機發光二極體(organic light- emitting diode, OLED)元件之高光譜穩定性光萃取膜,主要利用氧化物粒子與基材之間的折射率差異,將高折射率氧化物奈米粒子添加於高分子基材之中形成散射效果,促使原本未摻雜部分全反射之光路徑改變,增加導出玻璃基板之光子量,以破壞基板模態提升出光效率。
首先,針對平均粒徑200 nm、不規則狀二氧化鋯(ZrO2)進行表面改質:將ZrO2奈米粒子與表面修飾劑、聚甲基丙烯酸甲酯(poly(methyl methacrylate, PMMA)、乙酸丁酯(butyl acetate, BA)混成溶液,經過磁石攪拌與高速均質後,再以BA稀釋完成溶液配製。接著以旋轉塗佈法,將配製完成之溶液塗佈在洗淨玻璃基板上,並加熱烘乾完成光萃取膜;最後將光萃取膜以高分子模造與紫外光成型技術,翻製出具有相同表面形貌之PET膜片,再分別探討其表面形貌、ZrO2奈米粒子對OLED效率增益變化。
透過配製不同ZrO2含量與表面修飾劑比例,以掃描式電子顯微鏡(scanning electron microscopy, SEM)觀察其表面形貌的影響,再將其貼附於OLED,利用輝度計量測系統,探討光萃取膜內ZrO2如何提高光譜穩定性和效率增益。
In this thesis, manufacture of light-extraction films with highly stable CIE indices for organic light-emitting diode (OLED) was focused on. The light-extraction films were made by adding oxide nanoparticles, having a high refractive index, uniformally dispersed in the polymeric matrix. The efficiency of the OLED is increased by destroying substrate waveguide through light scattering from oxide nanoparticles with a high refractive index.
Zirconia nanoparticles, having an average size of 200 nm and irregular shape, were surface modified firstly. The modified ZrO2 nanoparticles, poly(methyl methacrylate) (PMMA), and butyl acetate (BA) were then mixed using a magnetic stirrer and a mechanical homogenizer to form a suspended solution. The solution was diluted by adding a certain amount of butyl acetate, followed by spin coating on glass substrates to form light-extraction films. In addition, duplicate of light-extraction films without zirconia nanoparticles was performed by using polydimethylsiloxane (PDMS) molding and UV forming techniques. Finally, efficiency improvement and optical properties of the OLED were investigated by attaching either light-extraction films or duplicate on the OLED.
Surface morphologies of light-extraction films and their duplicates were measured using a scanning electron microscopy (SEM). The emitting spectra, CIE indices, luminous current efficiency and power efficiency of the OLED attached with either light-extraction films or their duplicates were analyzed by using a chroma meter (CS-1000A).
致謝 I
摘要 III
Abstract V
主目錄 VII
圖目錄 XI
表目錄 XXV
符號目錄 XXVII
第一章 序論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 2
1.3.1 波導現象 2
1.3.2 OLED出光增益 3
1.3.3 光萃取膜製作 14
第二章 理論基礎 23
2.1 光的反射與折射性質 23
2.2 光波導現象 26
2.3 效率增益 28
2.4 OLED色彩鑑定 30
2.5 散射粒子濃度與效率、色座標變化關係計算 31
2.5.1 重量百分濃度計算 31
2.5.2 重量百分濃度與體積百分濃度換算 32
第三章 實驗步驟與測量方式 35
3.1 光萃取膜製程 35
3.1.1 選用材料 37
3.1.2 氧化物奈米粒子表面改質 38
3.1.3 光萃取膜製備 39
3.1.4 高分子模造與紫外光成型技術 39
3.2 性質分析 40
3.2.1 光萃取膜表面形貌 40
3.2.2 效率增益 40
3.3 製程使用設備及量測儀器 41
3.3.1 磁石攪拌機 42
3.3.2 高速均質機 42
3.3.3 旋轉塗佈機 43
3.3.4 加熱板 43
3.3.5 真空烘箱 44
3.3.6 紫外光硬化機 44
3.3.7 掃描式電子顯微鏡暨能量散佈分析儀 45
3.3.8 輝度計 46
第四章 實驗結果與討論 47
4.1 PMMA、Z6300之性質分析 47
4.2 表面修飾劑Z6300之影響 55
4.2.1 表面修飾劑Z6300比例對光萃取膜表面形貌之影響 58
4.2.2 表面修飾劑Z6300比例對OLED效率之影響 62
4.3 PMMA之影響 67
4.3.1 PMMA比例對光萃取膜表面形貌之影響 67
4.3.2 PMMA比例對OLED效率之影響 73
4.4 薄膜厚度之影響 77
4.4.1 薄膜厚度對光萃取膜表面形貌之影響 77
4.4.2 薄膜厚度對OLED效率之影響 81
4.5 表面形貌之影響 85
4.5.1 表面形貌對光萃取膜之影響 86
4.5.2 表面形貌對OLED效率之影響 89
4.6 綜合參數關係探討 93
第五章 結論 99
第六章 未來工作 103
參考文獻 105

[1] https://zh.wikipedia.org/wiki/%E6%9C%89%E6%A9%9F%E7%99%BC%E5%85%89%E4%BA%8C%E6%A5%B5%E9%AB%94#%E9%A9%85%E5%8B%95%E6%96%B9%E5%BC%8F
[2] N. K. Patel, S. Cinà, and J. H. Burroughes, “High-Efficiency Organic Light-Emitting Diodes,” IEEE Journal of Selected Topics in Quantum Electronics, 8 (2002) 346–361.
[3] R. Bathelt, D. Buchhauser, C. Ga¨rditz, R. Paetzold, P. Wellmann, “Light extraction from OLEDs for lighting applications through light scattering,” Organic Electronics, 8 (2007) 293–299.
[4] N. C. Linn, C.-H. Sun, P. Jiang, B. Jiang, “Self-assembled biomimetic antireflection coatings,” Applied Physics Letters, 91 (2007) 101108.
[5] J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Yi Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Letters, 9 (2009) 279–282.
[6] H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Solar Energy Materials & Solar Cells, 93 (2009) 1773–1778.
[7] M. Han, W. Lee, S.-K. Lee, S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sensors and Actuators A 111 (2004) 14–20.
[8] Z. Ling, K. Lian, “SU-8 3D microoptic components fabricated by inclined UV lithography in water,” Microsystem Technologies, 13 (2007) 245–251.
[9] Z.-G. Ling, K. Lian, “New fabrication techniques of SU-8 fiber holder with cantilever-type elastic microclips by inclined UV lithography in water using single Mylar mask,” Microsystem Technologies, 16 (2010) 405–410.
[10] J. Shen, F. Li, Z. Cao, D. Barat, G. Tu, “Light Scattering in Nanoparticle Doped Transparent Polyimide Substrates,” ACS Applied Materials and Interfaces, 9 (2017) 14990−14997.
[11] W. Ji, L. Zhang, M. Liu, J. Wang, G. Liu, W. Xie, H. Zhang, “High efficiency top-emitting white organic light-emitting devices with a (metal/organic)2 cathode,” Current Applied Physics, 11 (2011) 1410−1413.
[12] A. Kumar, R. Srivastava, P. Tyagi, M. N. Kamalasanan, D. S. Mehta, “Outcoupling efficiency enhancement in organic light emitting diodes via nano-structured indium tin oxide and nano-phosphors,” Organic Electronics, 13 (2012) 2879−2886.
[13] G. Nenna, A. D. G. D. Mauro, E. Massera, A. Bruno, T. Fasolino, C. Minarini, “Optical properties of polystyrene-ZnO nanocomposite scattering layer to improve light extraction in organic light-emitting diode,” Journal of Nanomaterials, 2012 (2012). 1−7.
[14] C.-H. Chang, K.-Y. Chang, Y.-J. Lo, S.-J. Chang, H.-H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer,” Organic Electronics, 13 (2012) 1073−1080.
[15] H.-C. Chen, K.-J. Chen, C.-C. Lin, C.-H. Wang, H.-V. Han, H.-H. Tsai, H.-T. Kuo, S.-H. Chien, M.-H. Shih, H.-C. Kuo, “Improvement in uniformity of emission by ZrO2 nano-particles for white LEDs,” Nanotechnology, 23 (2012) 265201.
[16] Y. H. Kim, J.-Y. Bae, J. Jin, B.-S. Bae, “Sol−Gel Derived Transparent Zirconium-Phenyl Siloxane Hybrid for Robust High Refractive Index LED Encapsulant,” ACS Applied Materials and Interfaces, 6 (2014) 3115−3121.
[17] S. Lee, H.-J. Shin, S.-M. Yoon, D. K. Yi, J.-Y. Choi, U. Paik, “Refractive index engineering of transparent ZrO2- polydimethylsiloxane nanocomposites,” Journal of Materials Chemistry, 18 (2008) 1751–1755.
[18] M. Sangermano, B. Voit, F. Sordo, K.-J. Eichhorn, G. Rizza, “High refractive index transparent coatings obtained via UV/thermal dual-cure process,” Polymer, 49 (2008) 2018–2022.
[19] M. Asiltürk, E. Burunkaya, F. Sayılkan, N. Kiraz, E. Arpaç, “Structural and optical properties of thin films prepared from surface modified ZrO2,” Journal of Non-Crystalline Solids, 357 (2011) 206−210.
[20] M. Ochi, D. Nii, Y. Suzuki, M. Harada, “Thermal and optical properties of epoxy/zirconia hybrid materials synthesized via in situ polymerization,” Journal of Materials Science, 45 (2010) 2655–2661.
[21] G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. Niederberger, J. Stumpe, “Large-Scale Synthesis of Organophilic Zirconia Nanoparticles and their Application in Organic–Inorganic Nanocomposites for Efficient Volume Holography,” Small of Efficient Holography from Zirconia Nanocomposites, 3 (2007) 1626−1632.
[22] N. Nakamura, N. Fukumoto, N. Wada, M. Ohgawara, “Light extraction analysis of organic light emitting diodes fabricated on high refractive index glass scattering layer,” Journal of Applied Physics, 13 (2012) 2879–2886.
[23] C.-H. Shin, E. Y. Shin, M.-H. Kim, J.-H. Lee, Y. Choi, “Nanoparticle scattering layer for improving light extraction efficiency of organic light emitting diodes,” Optical Society of America, 23 (2015) A133−A139.
[24] K. Xu, S. Zhou, L. Wu, “Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings,” Journal of Materials Science, 44 (2009) 1613–1621.
[25] C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, C.-C. Wua, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Applied Physics Letters, 94 (2009) 103302.
[26] C.-H. Chang, C.-Y. Shina, K.-Y. Changa, Y.-J. Loa, T.-F. Changa, H.-H. Chang, “Using an embedded nanocomposite scattering film for increasing outcoupling of white phosphorescent organic light-emitting devices,” SPIE Organic Photonics and Electronics, 8476 (2012) 84761T.
[27] Physics for Scientists and Engineers with Modern Physics; R. A. Serway. (10th ed.) Cengage Learning. (2001)
[28] https://zh.wikipedia.org/wiki/CIE1931%E8%89%B2%E5%BD%A9%E7%A9%BA%E9%97%B4
[29] https://en.wikipedia.org/wiki/Zirconium_dioxide
[30] https://en.wikipedia.org/wiki/Poly(methyl_methacrylate)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *