帳號:guest(3.135.191.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:郭庭維
作者(英文):Ting-Wei Guo
論文名稱:鈀碳於染料敏化太陽能電池對電極之應用
論文名稱(英文):Application of palladium-carbon on counter electrode of dye-sensitized solar cell
指導教授:林育賢
指導教授(英文):Yu-Shyan Lin
口試委員:鄭岫盈
林育賢
黃家華
口試委員(英文):Shiou-Ying Cheng
Yu-Shyan Lin
Chia-Hua Huang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610522015
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:102
關鍵詞:染料敏化太陽能電池鈀碳對電極
關鍵詞(英文):Dye-sensitized solar cellPalladium-carbonCounter electrode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
本研究利用網印版印刷製作二氧化鈦工作電極以及散射層。在實驗中工作電極與散射層分別採用小顆粒P25二氧化鈦粉末及大顆粒P200二氧化鈦粉末與小顆粒P25二氧化鈦粉末做混合之粉末。
首先找出最佳工作電極層數,再以散射層、並嘗試不同四氯化鈦後處理時間來提高短路電流密度,使光電轉換效率由6.19 %提高至8.33 %。
接著在鉑對電極上添加不同濃度之鈀碳懸浮液,並找出最佳濃度,得到較佳之對電極。
從實驗結果得知添加較低濃度之鈀碳懸浮液於鉑對電極有助於提高短路電流密度。短路電流由15.49 mA/cm2提升至16.86 mA/cm2,從而將光電轉換效率由8.33 %提升至8.61 %。
The study used of screen printing plate production of titanium dioxide working electrode, and the scattering layer. The experimental working electrode and the scattering layer used small particles of Degussa P25 titania powder and large particles of Degussa P200 titania powder mixed with small particle Degussa P25 titanium dioxide powder, respectively.
First of all, to find the best working electrode layer, and then the scattering layer, to try different titanium tetrachloride treatment time to improve the short-circuit current density, the photoelectric conversion efficiency has increased from 6.19 % to 8.33 %.
Sequentially, different concentrations of palladium-carbon suspension were added to the platinum counter electrode to find out the optimal concentration to obtain a better counter electrode.
The experimental results showed that added a lower concentration of palladium-carbon suspension has helped to increase the short-circuit current density. Short-circuit current has increased from 15.49 mA/cm2 to 16.86 mA/cm2, which has improved the photoelectric conversion efficiency from 8.33 % to 8.61 %.
誌謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XIII
表目錄 XIX
第一章 緒論 1
1.1前言 1
1.2研究動機 5
第二章 理論基礎與文獻回顧 7
2.1 太陽光譜(Solar spectrum) 7
2.2 太陽能電池簡介(Solar cells) 9
2.3 太陽能電池分類 11
2.3.1矽晶圓太陽能電池 11
2.3.2化合物薄膜太陽能電池 12
2.3.3有機太陽能電池 13
2.4染料敏化太陽能電池工作原理 14
2.5染料敏化太陽能電池結構 16
2.5.1基板 16
2.5.2工作電極 17
2.5.3染料光敏化劑 18
2.5.4電解質 19
2.5.5對電極 19
2.6應用於染料敏化太陽能電池對電極之碳材料 21
2.6.1碳黑(Carbon black) 21
2.6.2活性碳(Active carbon) 22
2.6.3奈米碳管(Carbon nanotube, CNT) 23
2.6.4氧化石墨烯(Grapheme oxide, GO)與還原氧化石墨烯(Reduced graphene oxide, RGO) 24
2.6.5鈀碳(Palladium-carbon, Pd/C) 26
第三章 實驗方法與裝置 27
3.1實驗儀器與設備 27
3.1.1超純水系統(Ultrapure water purification system) 27
3.1.2加熱磁石攪拌器(Magnetic stirrer) 27
3.1.3超音波震盪機(Ultrsonic cleaner) 27
3.1.4網印版(Screen cleaner) 28
3.1.5烘箱(Oven ) 28
3.1.6高溫爐管(High temperature tube furnace) 28
3.1.7鑽孔機(Driller) 28
3.1.8熱壓機(Thermo compressor) 28
3.1.9微量滴管(Micropipette) 29
3.2測量儀器設備 30
3.2.1太陽能電池I-V量測系統(Solar cell I-V measurements) 30
3.2.2場發射掃描式電子顯微鏡(Field emission of scanning electron microscope, FE-SEM) 32
3.2.3 X光繞射儀(X-ray diffaction, XRD) 33
3.2.4 紫外光-可見光光譜儀(UV-Vis spectrophotometer) 34
3.2.5 三維表面輪廓儀(3D-surface profiler) 35
3.2.6強度調制光電流/光電壓頻譜(Intensity modulated photocurrent spectroscopy and intensity modulated photovoltage spectroscopy, IMPS/IMVS) 35
3.2.7電化學阻抗頻譜(Electrochemical impedance spectroscopy, EIS) 36
3.2.8拉曼光譜儀(Raman spectrometer) 38
3.2.9掃描式電子顯微鏡( Scanning electron microscope, SEM) 39
3.3實驗藥品 40
3.4實驗流程 42
3.4.1工作電極漿料製作 42
3.4.2散射層漿料製作 43
3.4.3四氯化鈦前處理 44
3.4.4工作電極製作 45
3.4.5四氯化鈦後處理 46
3.4.6染料溶液配製 47
3.4.7對電極製作 48
3.4.8電池組裝 50
第四章 結果與討論 51
4.1工作電極與散射層XRD晶相分析 51
4.2工作電極與散射層FE-SEM表面形貌 53
4.3工作電極比較 56
4.3.1工作電極層數比較 56
4.3.2工作電極有無添加散射層比較 59
4.3.3工作電極有無四氯化鈦後處理及不同四氯化鈦後處理時間比較 62
4.3.4四層工作電極添加散射層搭配最佳四氯化鈦後處理時間 68
4.4添加不同濃度的鈀碳懸浮液於Pt對電極SEM表面形貌及EDS分析 70
4.5添加不同濃度的鈀碳懸浮液於Pt對電極拉曼光譜 77
4.6添加不同濃度的鈀碳懸浮液於Pt對電極比較 79
4.7最佳參數對電極搭配最佳參數工作電極 87
第五章 結論 89
第六章 未來展望 93
參考文獻 95
[1] C. J. Brabec, J. R. Durrant, "Solution-processed organic solar cells," Mrs Bulletin, vol. 33 (2008), pp. 670-675.
[2] J. A. Turner, "A realizable renewable energy future," Science, vol. 285 (1999), pp. 687-689.
[3] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, "Synthesis of conjugated polymers for organic solar cell applications," Chemical reviews, vol. 109 (2009), pp. 5868-5923.
[4] G. T. Farmer, J. Cook, "Earth’s Energy Budget, Climate Change Science: A Modern Synthesis," Springer (2013), pp. 81-95.
[5] K. E. Jasim, "Dye sensitized solar cells-working principles, challenges and opportunities," Solar Cells-Dye-Sensitized Devices (InTech) (2011).
[6] M. Pagliaro, G. Palmisano R. Ciriminna, "Flexible solar cells," New York: John Wiley and Sons (2008), p.37.
[7] J. Jeong, "PHOTOVOLTAICS: Mesuring the 'Sun'" (2009). [Online]. Available: https://www.laserfocusworld.com/articles/2009/05/photovoltaics-measuring-the-sun.html.
[8] K. Ranabhat, L. Patrikeev, A. A. Revina, K. Andrianov, V. Lapshinsky, E. Sofronova, "An introduction to solar cell technology," Review Paper (2016).
[9] A.-E. Becquerel, "Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques," CR Acad. Sci, vol. 9 (1839), pp. 1.
[10] B. O'regan, M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, vol. 353 (1991), pp. 737.
[11] "Research Cell Record Efficiency Chart," National Renewable Energy laboratory (NREL), [Online]. Available : https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
[12] N. Shahzad, F. Risplendi, D. Pugliese, S. Bianco, A. Sacco, A. Lamberti, R. Gazia, E. Tresso, G. Cicero, "Comparison of hemi-squaraine sensitized TiO2 and ZnO photoanodes for DSSC applications," The Journal of Physical Chemistry C, vol. 117 (2013), pp. 22778-22783.
[13] K. Kalyanasundaram, M. Gratzel, "Efficient dye-sensitized solar cells for direct conversion of sunlight to electricity," Material Matters, vol. 4 (2009), pp. 88-90.
[14] L. Yang, X. Yu, W. Hu, X. Wu, Y. Zhao, D. Yang, "An 8.68% efficiency chemically-doped-free graphene–silicon solar cell using silver nanowires network buried contacts," ACS applied materials & interfaces, vol. 7 (2015), pp. 4135-4141.
[15] F.-I. Lai, J.-F. Yang, W.-C. Chen, S.-Y. Kuo, "Cu2ZnSnSe4 thin film solar cell with depth gradient composition prepared by selenization of sputtered novel precursors," ACS applied materials & interfaces, vol. 9 (2017), pp. 40224-40234.
[16] A. Latini, C. Cavallo, F. K. Aldibaja, D. Gozzi, D. Carta, A. Corrias, L. Lazzarini, G. Salviati, "Efficiency improvement of DSSC photoanode by scandium doping of mesoporous titania beads," The Journal of Physical Chemistry C, vol. 117 (2013), pp. 25276-25289.
[17] 吳仁彰, "太陽能電池介紹," 靜宜大學應用化學系 (2012).
[18] T. Markvart, L. Castaner, "Principles of solar cell operation," McEvoy's Handbook of Photovoltaics (Third Edition) (2018), pp. 3-28.
[19] I. Yahia, S. AlFaify, A. A. Al-ghamdi, H.S. Hafez, S. El-Bashir, A. Al-Bassam, A. El-Naggar, F. Yakuphanoglu, "Synthesis and characterization of DSSC by using Pt nano-counter electrode: photosensor applications," Applied Physics A, vol. 122 (2016), pp. 569.
[20] X. Yang, M. Yanagida, L. Han, "Reliable evaluation of dye-sensitized solar cells," Energy & Environmental Science, vol. 6 (2013), pp. 54-66.
[21] L. Kavan, P. Liska, S. M. Zakeeruddin, M. Gra?tzel, "Optically transparent FTO-free cathode for dye-sensitized solar cells," ACS applied materials & interfaces, vol. 6 (2014), pp. 22343-22350.
[22] A. Di Paola, M. Bellardita, L. Palmisano, "Brookite, the least known TiO2 photocatalyst," Catalysts, vol. 3 (2013), pp. 36-73.
[23] L. Pauling, J.H. Sturdivant, "XV. The crystal structure of brookite," Zeitschrift fur Kristallographie-Crystalline Materials, vol. 68 (1928), pp. 239-256.
[24] K. E. Lee, M. A. Gomez, S. Elouatik, G.P. Demopoulos, "Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging," Langmuir, vol. 26 (2010), pp. 9575-9583.
[25] M. K. Nazeeruddin, P. Pechy, M. Gratzel, "Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on atrithiocyanato–ruthenium complex," Chemical Communications (1997), pp. 1705-1706.
[26] M. K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells," Journal of the American Chemical Society, vol. 123 (2001), pp. 1613-1624.
[27] 吳仁彰, "太陽能電池介紹," 靜宜大學應用化學系 (2012)..
[28] S. S. Jeon, C. Kim, J. Ko, S. S. Im, "Pt nanoparticles supported on polypyrrole nanospheres as a catalytic counter electrode for dye-sensitized solar cells," The Journal of Physical Chemistry C, vol. 115 (2011), pp. 22035-22039.
[29] M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Gra?tzel, T. Ma, "Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells," Journal of the American Chemical Society, vol. 134 (2012), pp. 3419-3428.
[30] T. Peng, W. Sun, C. Huang, W. Yu, B. Sebo, Z. Dai, S. Guo, X.-Z. Zhao, "Self-assembled free-standing polypyrrole nanotube membrane as an efficient FTO- and Pt-free counter electrode for dye-sensitized solar cells," ACS applied materials & interfaces, vol. 6 (2013), pp. 14-17.
[31] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, "Highly efficient dye-sensitized solar cells based on carbon black counter electrodes," Journal of the Electrochemical Society, vol. 153 (2006), pp. A2255-A2261.
[32] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.-i. Nakamura, K. Murata, "High-performance carbon counter electrode for dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 79 (2003), pp. 459-469.
[33] K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, "Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells," Chemistry Letters, vol. 32 (2002), pp. 28-29.
[34] S. H. Huh, S.-H. Choi, H.-M. Ju, "Thickness-dependent solar power conversion efficiencies of catalytic graphene oxide films in dye-sensitized solar cells," Current Applied Physics, vol. 11 (2011), pp. S352-S355.
[35] C. Chen, M. Long, M. Xia, C. Zhang, W. Cai, "Reduction of graphene oxide by an in-situ photoelectrochemical method in a dye-sensitized solar cell assembly," Nanoscale research letters, vol. 7 (2012), pp. 101.
[36] 王俊傑, "高表面積白金對電極及具光子晶體結構之導電玻璃在染敏太陽電池之應用," 國立臺灣大學化學工程學系碩士學位論文 (2011).
[37] P. Vijayakumar, M. S. Pandian, A. Pandikumar, P. Ramasamy, "A facile one-step synthesis and fabrication of hexagonal palladium-carbon nanocubes (H-Pd/C NCs) and their application as an efficient counter electrode for dye-sensitized solar cell (DSSC)," Ceramics International, vol. 43 (2017), pp. 8466-8474.
[38] H. Wakamatsu, Y. Kikka, N. Tanaka, "Introduction of ultra pure water close system into semiconductor plant," Oki Technical Review, vol. 160 (1998), pp. 45.
[39] U. Mehmood, A. Ur Rehman, H. M. Irshad, A. Ul Haq Khan, A. Al-Ahmed, "Carbon/carbon nanocomposites as counter electrodes for platinum free dye-sensitized solar cells," Organic Electronics, vol. 35 (2016), pp. 128-135.
[40] 香港可再生能源網, http://re.emsd.gov.hk/tc_chi/solar/solar_ph/solar_ph_to.html.
[41] K. Rokosz, T. Hryniewicz, D. Matysek, S. Raaen, J. Vali?ek, ?. Dudek, M. Harni?arova, "SEM, EDS and XPS analysis of the coatings obtained on titanium after plasma electrolytic oxidation in electrolytes containing copper nitrate," Materials, vol. 9 (2016), pp. 318.
[42] A. A. Bunaciu, E. G. Udri?Tioiu, H. Y. Aboul-Enein, "X-ray diffraction: instrumentation and applications," Critical Reviews in Analytical Chemistry, vol. 45 (2015), pp. 289-299.
[43] S. Baskaran, "Structure and regulation of yeast glycogen synthase," ResearchGate (2010).
[44] L. Antonov, G. Gergov, V. Petrov, M. Kubista, J. Nygren, "UV–Vis spectroscopic and chemometric study on the aggregation of ionic dyes in water," Talanta, vol. 49 (1999), pp. 99-106.
[45] C. Perez Leon, L. Kador, B. Peng, M. Thelakkat, "Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV? Vis, Raman, and FTIR spectroscopies," The Journal of Physical Chemistry B, vol. 110 (2006), pp. 8723-8730.
[46] A. J. Frank, N. Kopidakis, J. van de Lagemaat, "Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties," Coordination Chemistry Reviews, vol. 248 (2004), pp. 1165-1179.
[47] M. Wu, H. Guo, Y.-n. Lin, K. Wu, T. Ma, A. Hagfeldt, "Synthesis of highly effective vanadium nitride (VN) peas as a counter electrode catalyst in dye-sensitized solar cells," The Journal of Physical Chemistry C, vol. 118 (2014), pp. 12625-12631.
[48] 馬延麗, "染料敏化太陽能電池:從理論基礎到技術應用," 化學工業出版社 (2013).
[49] 林佑錩, "巴克紙應用在染料敏化太陽能電池對電極之研究," 東海大學應用物理學系碩士學位論文 (2015).
[50] Z. Shi, H. Lu, Q. Liu, F. Cao, J. Guo, K. Deng, L. Li, "Efficient p-type dye-sensitized solar cells with all-nano-electrodes: NiCo2S4 mesoporous nanosheet counter electrodes directly converted from NiCo2O4 photocathodes," Nanoscale research letters, vol. 9 (2014), pp. 608.
[51] 劉玥蘭, "二氧化鈦散射層於染料敏化太陽能電池中之特性研究," 國立東華大學材料科學與工程學系碩士學位論文 (2015).
[52] 邱偉傑, "高效率染料敏化太陽能電池特性研究 (>9%)," 國立東華大學材料科學與工程學系碩士學位論文 (2016).
[53] S. Ymabi, H. Imai, "Crystal phase control for titanium dioxide films by direct deposition in aqueous solutions," Chem. Mater., vol. 14 (2002), pp. 609-614.
[54] A. Annamalai, A. Subramanian, U. Kang, H. Park, S. H. Choi, J. S. Jang, "Activation of hematite photoanodes for solar water splitting: effect of FTO deformation," The Journal of Physical Chemistry C, vol. 119 (2015), pp. 3810-3817.
[55] A. C. Ferrari, J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical review B, vol. 61 (2000), pp. 14095.
[56] K. Kawata, S.-N. Gan, D. T.-C. Ang, K. P. Sambasevam, S.-W. Phang, N. Kuramoto, "Replacing platinum in a dye-sensitized solar cell," 10.2417/spepro.005150 (2013).
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *