帳號:guest(3.147.195.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:蘇中信
作者(英文):Chung-Xsin Su
論文名稱:製備具有Core-Shell結構之InTaO4粉末及其光催化性質研究
論文名稱(英文):Synthesis and photocatalytic properties of core-shell structure InTaO4 photocatalyst
指導教授:張文固
指導教授(英文):Wen-Ku Chang
口試委員:胡紹華
黃士龍
口試委員(英文):Shao-Hua Hu
Shyh-Lung Hwang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610522016
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:64
關鍵詞:固相燒結法光觸媒核殼結構InTaO4
關鍵詞(英文):solid-state synthesisphotocatalyticcore-shell structureInTaO4
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
本研究利用固相燒結法製備InTaO4可見光觸媒粉末,實驗中以不同燒結溫度、不同核殼結構與不同反應物濃度比例,此三個參數製備光觸媒,並探討其對光觸媒效果之影響。實驗結果以X-ray繞射儀判別材料的結晶相,以掃描式&穿透式電子顯微鏡(SEM&TEM)鑑別粉體之表面形貌、成分分析及核殼結構,以UV-vis.分光光譜儀檢測光觸媒之光吸收波長範圍,並利用亞甲基藍溶液進行降解脫色實驗,以探討InTaO4在可見光照射下之催化能力。
結果顯示當燒結溫度高於850℃時InTaO4開始生成,並在1000℃時反應完全無殘留反應物。當Ta2O5:In2O3 =1:1之InTaO4產物其光觸媒效果隨InTaO4含量的提升而增強;而在Ta2O5:In2O3 =1.5:1與Ta2O5:In2O3 =1:1.5之核殼結構部分,結果顯示以Ta2O5為核之InTaO4光觸媒活性較佳。本實驗針對改變Ta2O5與In2O3之比例合成不同核殼厚度之光觸媒材料,隨著Ta2O5比例提升則核殼厚度隨之下降,因此導致電子電洞對再結合時間縮短使得光觸媒效果下降,本研究得出之最佳光催化能力反應參數為濃度比例Ta2O5:In2O3 =1.5:1且添加PVA時,燒結溫度在1100℃所反應之InTaO4光觸媒材料,具有最佳光催化能力,可在可見光照射六小時內,使得亞甲基藍濃度降解至0.13%。
In this research, InTaO4 were synthesized by solid-state reaction, using different synthesize temperature, different ratio of reactor and different core-shell structure as parameter. Then characterized the experiment result by X-ray diffraction (XRD) to determine structure, Scanning electron microscope (SEM) for Surface topography, Transmission electron microscope (TEM) for core-shell structure, and UV-visible spectrometer. The photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light irradiation.
The result of experiment shows that when synthesize temperature is over 850℃, InTaO4 start to appear and the reaction complete at 1000℃, which means no reactor remain. When synthesize ratio is Ta2O5:In2O3 =1:1, photocatalytic will raise with the InTaO4. In the ratio of Ta2O5:In2O3 =1.5:1 and Ta2O5:In2O3 =1:1.5 are different core-shell structure, compare to the photocatalytic activity Ta2O5:In2O3 =1.5:1 is better . In the last experiment are changing the ratio of Ta2O5 and let InTaO4 have different length of shell, the length will decrease with Ta2O5 ratio raise, which lead to short the recombination time of the electron and electron hole and the decrease of photocatalytic properties. The result of the best parameter is Ta2O5:In2O3 =1.5:1 with PVA and under 1100℃ and it’s able to degradation MB concentration to 0.13% in 6 hour.
第1章 前言 1
1.1 概述 1
1.2 研究動機 2
第2章 理論基礎與文獻回顧 3
2.1 光觸媒簡介 3
2.2 核殼結構簡介 5
2.3 光觸媒種類介紹 6
2.3.1 二氧化鈦光觸媒材料 6
2.3.2 氧化鋅光觸媒材料 8
2.3.3 硫化鎘光觸媒材料 8
2.3.4 鈦酸鍶(SrTiO3)光觸媒材料 8
2.4 燒結原理-固相燒結法 9
2.5 混合原理-濕式球磨法 10
2.6 InTaO4光觸媒材料簡介 11
2.7 文獻回顧 13
2.7.1 M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) 13
2.7.2 溶膠凝膠法製備InTaO4材料 14
2.7.3 濕式化學法合成InTaO4材料 15
2.7.4 水熱法合成InVO4材料 16
2.7.5 MIn2O4 ( M=Ca, Sr, Ba ) 18
第3章 實驗方法及步驟 21
3.1 實驗藥品與設備 21
3.1.1 藥品 21
3.1.2 設備與儀器 21
3.2 InTaO4材料的製備 22
3.3 粉體之鑑定與分析 23
3.3.1 X-Ray繞射分析儀 23
3.3.2 掃描式電子顯微鏡 (SEM) 24
3.3.3 穿透式電子顯微鏡 (TEM) 24
3.3.4 紫外光/可見光分光光譜儀 24
3.4 可見光降解實驗 25
第4章 結果與討論 27
4.1 概述 27
4.2 不同燒結溫度對InTaO4之影響 27
4.3 Ta2O5:In2O3 =1.5:1對光催化性質的影響 30
4.4 添加分散劑對光催化性質的影響 34
4.5 不同比例Ta2O5與In2O3對InTaO4之影響 43
4.5.1 濃度比例Ta2O5:In2O3 =1:1.5對光催化性質的影響 43
4.5.2 濃度比例Ta2O5:In2O3 =2:1對光催化性質及核殼結構的影響 45
4.5.3 濃度比例Ta2O5:In2O3 =2.5:1對光催化性質及核殼結構的影響 50
4.6 Ta2O5與In2O3各濃度對InTaO4粉體之核殼結構及光觸媒性質影響 55
第5章 結論 59
[1] A. FUJISHIMA and K. HONDA, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, vol. 238, pp. 37-38, 1972.
[2] S. Frank and A. Bard, "," Journal of the American Chemical Society, pp. 303-304, 1977.
[3] J. Ye et al., "A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation," Chemical Physics Letters, vol. 356, no. 3, pp. 221-226, 2002/04/22/ 2002.
[4] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis," Chemical Reviews, vol. 95, no. 1, pp. 69-96, 1995/01/01 1995.
[5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides," pp. 269-271, 2001.
[6] M. Fujihira, Y. Satoh, and T. Osa, "Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2," Nature, vol. 293, p. 206, 09/17/online 1981.
[7] D. Wang, Z. Zou, and J. Ye, "Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors," Chemistry of materials, vol. 17, no. 12, pp. 3255-3261, 2005.
[8] A. N. Kadam et al., "Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity," Journal of Industrial and Engineering Chemistry, vol. 61, pp. 78-86, 2018/05/25/ 2018.
[9] A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications. BKC, 1999.
[10] E. M. Levin and H. F. McMurdie, Phase diagrams for ceramists, 1975 supplement. United States: American Ceramic Society, Inc.,Columbus, OH, 1975.
[11] J. Tang, Z. Zou, J. Yin, and J. Ye, "Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation," Chemical Physics Letters, vol. 382, no. 1, pp. 175-179, 2003/11/28/ 2003.
[12] S. Wei, G. Zhang, and X. Xu, "Activating BaTaO2N by Ca Modifications and Cobalt Oxide for Visible Light Photocatalytic Water Oxidation Reactions," Applied Catalysis B: Environmental, 2018/06/04/ 2018.
[13] X. Wang, Y. Tang, M.-Y. Leiw, and T.-T. Lim, "Solvothermal synthesis of Fe–C codoped TiO2 nanoparticles for visible-light photocatalytic removal of emerging organic contaminants in water," Applied Catalysis A: General, vol. 409-410, pp. 257-266, 2011/12/15/ 2011.
[14] F. Chen, L. Zhang, X. Wang, and R. Zhang, "Noble-metal-free NiO@Ni-ZnO/reduced graphene oxide/CdS heterostructure for efficient photocatalytic hydrogen generation," Applied Surface Science, vol. 422, pp. 962-969, 2017/11/15/ 2017.
[15] 羅靖堯, "利用超臨界流體製備氧化鋅奈米粒子及其抗菌能力研究," 國立成功大學, 1997.
[16] C. A. K. Gouvêa, F. Wypych, S. G. Moraes, N. Durán, and P. Peralta-Zamora, "Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO," Chemosphere, vol. 40, no. 4, pp. 427-432, 2000/02/01/ 2000.
[17] M. Ashokkumar, "An overview on semiconductor particulate systems for photoproduction of hydrogen," International Journal of Hydrogen Energy, vol. 23, no. 6, pp. 427-438, 1998/06/01/ 1998.
[18] B.-J. Liu, T. Torimoto, and H. Yoneyama, "Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents," Journal of Photochemistry and Photobiology A: Chemistry, vol. 113, no. 1, pp. 93-97, 1998/02/15/ 1998.
[19] T. Ishii, H. Kato, and A. Kudo, "H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation," Journal of Photochemistry and Photobiology A: Chemistry, vol. 163, no. 1, pp. 181-186, 2004/04/15/ 2004.
[20] N. Koga, "Chapter 6 - Physico-Geometric Approach to the Kinetics of Overlapping Solid-State Reactions," in Handbook of Thermal Analysis and Calorimetry, vol. 6, S. Vyazovkin, N. Koga, and C. Schick, Eds.: Elsevier Science B.V., 2018, pp. 213-251.
[21] J. K. Hulme, (Phys. Rev.). 1953, p. 504.
[22] C. Keller, "Über ternäre Oxide des Niobs und Tantals vom Typ ABO4," Zeitschrift für anorganische und allgemeine Chemie, vol. 318, no. 1‐2, pp. 89-106, 1962/09/01 1962.
[23] L. H. Brixner and H. Y. Chen, "On the structural and luminescent properties of the InTa1−xNbxO4 system," Materials Research Bulletin, vol. 15, no. 5, pp. 607-612, 1980/05/01/ 1980.
[24] Z. Zou, J. Ye, and H. Arakawa, "Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties," Chemical Physics Letters, vol. 332, no. 3, pp. 271-277, 2000/12/22/ 2000.
[25] Z. Zou, J. Ye, K. Sayama, and H. Arakawa, "Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts," Journal of Photochemistry and Photobiology A: Chemistry, vol. 148, no. 1, pp. 65-69, 2002/05/31/ 2002.
[26] Y.-C. Chiou, U. Kumar, and J. C. S. Wu, "Photocatalytic splitting of water on NiO/InTaO4 catalysts prepared by an innovative sol–gel method," Applied Catalysis A: General, vol. 357, no. 1, pp. 73-78, 2009.
[27] R. Ullah, H. Sun, S. Wang, H. M. Ang, and M. O. Tadé, "Wet-Chemical Synthesis of InTaO4 for Photocatalytic Decomposition of Organic Contaminants in Air and Water with UV–vis Light," Industrial & Engineering Chemistry Research, vol. 51, no. 4, pp. 1563-1569, 2011.
[28] H.-b. Fang, M.-x. Xu, L. Ge, and Z.-y. He, "Synthesis and photocatalytic properties of In VO4 sol containing nanocrystals by mild hydrothermal processing," Transactions of Nonferrous Metals Society of China, vol. 16, pp. s373-s376, 2006/06/01/ 2006.
[29] Z. Zou, J. Ye, and H. Arakawa, "Photophysical and photocatalytic properties of InMO4 (M = Nb5+, Ta5+) under visible light irradiation," Materials Research Bulletin, vol. 36, no. 7, pp. 1185-1193, 2001/05/01/ 2001.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *