帳號:guest(3.141.32.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李力翔
作者(英文):Li-Xiang Li
論文名稱:反應式共濺鍍製備含碳二氧化鈦之光觸媒特性
論文名稱(英文):Photocatalytic properties of reactively sputtered carbon containing TiO2 thin films
指導教授:翁明壽
指導教授(英文):Ming-Show Wong
口試委員:楊天賜
陳怡嘉
口試委員(英文):Tien-Syh Yang
Yi-Jia Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610522017
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:84
關鍵詞:二氧化鈦氧化鈦光觸媒碳摻雜二氧化鈦
關鍵詞(英文):titanium dioxidetitanium oxidephotocatalystcarbon doped titanium dioxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏收藏:0
本研究是使用二氧化鈦靶和石墨靶各一以反應式磁控共濺鍍法製備含碳二氧化鈦膜,沉積於矽基板(100)與石英基板上。期望利用碳與TiO2在電漿中反應,製備不同碳摻雜程度的缺氧二氧化鈦薄膜,以提升可見光波長範圍之光利用率。
透過X光繞射儀,我們得知 : 在單一二氧化鈦靶濺鍍下形成1000奈米厚之二氧化鈦薄膜為銳鈦礦與金紅石混相。石墨靶功率為10W、25W 薄膜中銳鈦礦峰消失,新的金紅石相出現。功率50W時可發現銳鈦礦相完全消失,而石墨靶功率為100W時薄膜為非晶結構。從紫外-可見光吸收光譜中可以發現隨著二氧化鈦薄膜中碳含量的增加,薄膜在可見光範圍的吸收會有明顯的上升。高含量碳抑制二氧化鈦形成結晶,因此共濺鍍之薄膜在紫外-可見光吸收光譜中由二氧化鈦主導的吸收邊界消失。紫外-可見光吸收光譜中,含碳薄膜擁有更為圓滑吸收邊界。
在可見光照射下亞甲基藍降解實驗中,共濺鍍含碳薄膜比起純二氧化鈦薄膜降解能力無顯著提升。在此些含碳薄膜試片加上一層約200奈米厚之銳鈦礦二氧化鈦,其亞甲基藍降解能力始有提升,其中效果最好為含碳量最高之二氧化鈦共濺鍍與純二氧化鈦雙層結構薄膜試片。生長於低電阻基材如金、銀之純二氧化鈦薄膜擁有最高降解百分比,其次為生長於矽基板之薄膜,最低則是生長於藍寶石基板、石英基板之二氧化鈦薄膜。
本研究顯示銳鈦礦二氧化鈦薄膜之可見光光觸媒降解特性可因其底層膜之吸光性或其基材之導電性而有不同;底層膜之吸光性愈高或其基材之導電性愈好皆有助二氧化鈦薄膜之可見光光觸媒降解特性。


In this study, a series of carbon-containing titanium dioxide films were prepared on silicon and quartz substrates by a reactive magnetron co-sputtering a TiO2 target and a graphite target. It is expected that carbon and titanium dioxide will react in plasma to prepare oxygen-deficient titanium dioxide films with different carbon doping levels to improve the film light absorption rate in the visible wavelength range.
Through the X-ray diffractometer, we know that the 1000-nanometer-thick titanium dioxide film formed by sputtering on a single titanium dioxide target is a mixed phase of anatase and rutile. When the graphite target power is 10W or 25W, the anatase peak disappears in the film, and a new rutile phase appears. When the power is 50W, it can be found that the anatase phase completely disappears, and when the power of the graphite target is 100W, the film has an amorphous structure. From the ultraviolet-visible light absorption spectrum, it can be found that as the carbon content in the titanium dioxide film increases, the absorption of the film in the visible light range will increase significantly. The high content of carbon inhibits the formation of titanium dioxide crystals, so the absorption boundary dominated by titanium dioxide in the ultraviolet-visible light absorption spectrum of the co-sputtered film disappears. In the ultraviolet-visible light absorption spectrum, the carbon-containing film has a smoother absorption boundary.
In the methylene blue degradation experiment under visible light irradiation, the degradation ability of the co-sputtered carbon-containing film was not significantly improved compared to the pure titanium dioxide film. Adding a layer of anatase titanium dioxide with a thickness of about 200 nanometers to these carbon-containing thin film test pieces, the methylene blue degradation ability has been improved, and the best effect is the titanium dioxide co-sputtering film with the highest carbon content and pure titanium dioxide double-layer film. Pure titanium dioxide films grown on low-resistance substrates such as gold and silver have the highest percentage of degradation, followed by films grown on silicon substrates, and the lowest are those grown on sapphire substrates and quartz substrates.
This study shows that the visible light photocatalyst degradation characteristics of anatase titanium dioxide film can be different due to the light absorption of the underlying film or the conductivity of the substrate; the higher the light absorption of the underlying film or the better the conductivity of the substrate, both helps the degradation characteristics of visible light photocatalyst of titanium dioxide film.
摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 序論 1
1.1 前言 1
1.2 研究動機 3
第二章 基礎理論與回顧 4
2.1 二氧化鈦簡介 4
2.1.1 TiO2物理性質 4
2.1.2 Black TiO2 9
2.1.3 TiO2添加碳 10
2.2 電漿介紹 16
2.3 濺鍍原理 16
2.4 TiO2光觸媒原理 18
2.5 異質接面Heterojunction 20
第三章 儀器介紹及實驗流程 25
3.1 實驗規劃 25
3.2 試片準備和實驗儀器 27
3.2.1 濺鍍系統 27
3.2.2 試片準備 29
3.2.3 實驗製程 30
3.3 薄膜試片分析 31
3.3.1 三維表面輪廓儀 31
3.3.2 X 光繞射儀器 33
3.3.3 場發射掃描電子顯微鏡 35
3.3.4 紫外光/可見光吸收光譜儀(UV-visible) 36
3.3.5 亞甲基藍降解實驗 41
第四章 結果與討論 44
4.1 石墨靶材功率0~200 (W)膜厚1000 (nm)之薄膜性質 46
4.1.1 薄膜結構- 48
4.1.2 薄膜表面形貌與元素組成 51
4.1.3 薄膜光學性質 54
4.2 石墨靶材功率0~100W製程基材溫度300°C下製備薄膜 56
4.2.1 薄膜結構 57
4.2.2 薄膜表面形貌與元素組成 60
4.2.3 薄膜光學性質 62
4.2.4 光觸媒性質 64
4.3 二氧化鈦與不同基材於300°C下製備銳鈦礦薄膜 67
4.3.1 銳鈦礦二氧化鈦濺鍍於不同基材試片上薄膜結構 68
4.3.2 亞甲基藍降解-50、200 (nm)Anatase TiO2 + C-TiO2 71
4.3.3 亞甲基藍降解-銳鈦礦二氧化鈦濺鍍於不同基板 73
4.4 綜合討論 75
4.4.1 不同二氧化鈦膜厚對雙層膜試片亞甲基藍降解影響 75
第五章 結論與未來工作 76
5.1 結論 76
第六章 參考文獻 77
1.A. Fujishima, and K. Honda, 1972,“Electrochemical Photolysis of Water at a Semiconductor Electrode,”Nature, 238, p.37-38.
2.K. Sakamaki, K. Itoh, A. Fujishima, and Y. Gohshi, 1989,“Surface density of states of TiO2(110) single crystal and adsorbed molecular observation by scanning tunneling microscopy and tunneling spectroscopy, Vacuum Science & Technology A , 8, p.614-617.
3.D. Beydoun, and R. Amal, 2002,“Implications of heat treatment on the properties of a magnetic iron oxide–titanium dioxide photocatalyst,”Materials Science and Engineering B, 94, p.71-81.
4.D. Dvoranová, V. Brezová, M. Mazúr, and M. A. Malati, 2002,“Investigations of metal-doped titanium dioxide photocatalysts,” Applied Catalysis B: Environmental, 37(2), p.91-105.
5.S. S. H. Mi, C. J. Ran, H. H. Jin, K. S. Man, and B. Y. Chan, 2004,“Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation.”Journal of Photochemistry and Photobiology A: Chemistry, 163(1), p.37-44.
6.D. Chen, D. Yang, Q. Wang, and Z. Jiang, 2006,“Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles,”Industrial & Engineering Chemistry Research, 45(12), p.4110-4116.
7.S. In, A. Orlov, R. Berg, F. García, S. P. Jimenez, M. S. Tikhov, D. S. Wright, and R. M. Lambert, 2007,“Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts,”Journal of the American Chemical Society, 129(45), p.13790-13791.
8.A. Zaleska, J. W. Sobczak, E. Grabowska, and J. Hupka, 2008,“Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light,”Applied Catalysis B: Environmental, 78(1-2), p.92-100.
9.R. Asahi, T. Morikawa, K. Aoki, and Y. Taga, 2001,“Visible-light photocatalysis in nitrogen-doped titanium oxides,”Science, 293(5528), p.269-271.
10.X. B. Chen, and C. Burda, 2004,“Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles,”The Journal of Physical Chemistry B, 108(40), p.15446-15449.
11.S. U. M. Khan, M. A. Shahry, and W. B. Ingler Jr., 2002,“Efficient photochemical water splitting by a chemically modified n-TiO2,”Science, 297(5590), p.2243-2245.
12.F. Napoli, M. Chiesa, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, G. Pacchioni, and C. D. Valentin, 2009,“The nitrogen photoactive centre in N-doped titanium dioxide formed via interaction of N atoms with the solid. Nature and energy level of the species,”Chemical Physics Letters, 477(1-3), p.135-138.
13.X. B. Chen, and C. Burda, 2008,“The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials,”Journal of the American Chemical Society, 130(15), p.5018-5019.
14.C. D. Valentin, and G. Pacchioni, 2013,“Trends in non-metal doping of anatase TiO2: B, C, N and F,”Catalyst Today, 206, p.12-18.
15.H. Tada, T. Kiyonaga, and S. I. Naya, 2009,“Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium (IV) dioxide,”Chemical Society Reviews, 38(7), p.1849-1858.
16.C. Cheng, A. Amini, C. Zhu, Z. Xu, H. Song, and N. Wang, 2014, “Enhanced photocatalytic performance of TiO 2-ZnO hybrid nanostructures,”Scientific Reports, 4, p.4181.
17.吳明修, 2007,“Photocatalytic properties of density and porous bilayers of Cuprite and Titania,”National Dong Hwa University, June.
18.H. Okamoto, 2011,“O-Ti (oxygen-titanium),”Journal of Phase Equilibria and Diffusion, 32(5), p.473.
19.T. C. Chiou, 2018,“Room Temperature Ferromagnetism Properties of Annealed TiO2 Thin Films,”National Dong Hwa University, Jan.
20.X. Nie, S. Zhuo, G. Maeng, and K. Sohlberg, 2009,“Doping of TiO2 polymorphs for altered optical and photocatalytic properties,”International Journal of Photoenergy, p.1-22
21.M. Cancarevic, M. Zinkevich, and F. Aldinger, 2007,“Thermodynamic description of the Ti–O system using the associate model for the liquid phase,”Calphad, 31(3), p.330-342.
22.C. J. Howard, T. M. Sabine, and F. Dickson, 1991,“Structural and thermal parameters for rutile and anatase,”Acta Crystallographica B: Structural Science, 47(4), p.462-468.
23.K. Dornelles, M. Roriz, and V. F. Roriz, 2011,“Thermal performance of white solar-reflective paints for cool roofs and the influence on the thermal comfort and building energy use in hot climates,”Conference:ISES Solar World Congress.
24.X. B. Chen, L. Liu, P. Y. Yu, and S. S. Mao, 2011,“Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,”Science, 331(6018), p.746-750.
25.H. Liu, H. T. Ma, X. Z. Li, M. Wu, and X. H. Bao, 2003,“The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment,”Chemosphere, 50(1), p.39-46.
26.W. Mai, F. Wen, D. Xie, Y. X. Leng, and Z. L. Mu, 2014,“Structure and composition study of carbon-doped titanium oxide film combined with first principles,”Journal of Advanced Ceramics, 3(1), p.49-55.
27.D. Portehault, V. Maneeratana, C. Candolfi, N. Oeschler, I. Veremchuk, Y. Grin, C. Sanchez, and M. Antonietti, 2011,“Facile general route toward tunable magnéli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposites,”ACS Nano, 5(11), p.9052-9061.
28.X. P. Wang, Y. X. Tang, M. Y. Leiw, and T. T. Lim, 2011,“Solvothermal synthesis of Fe–C codoped TiO2 nanoparticles for visible-light photocatalytic removal of emerging organic contaminants in water,” Applied Catalysis A: General, 409, p.257-266.
29.J. H. Huang, and M. S. Wong, 2011,“Structures and properties of titania thin films annealed under different atmosphere,”Thin Solid Films, 520(5), p.1379-1384.
30.M. K. Tian, M. M. Samani, G. Eres, R. Sachan, M. Yoon, M. F. Chisholm, Kai Wang, A. A. Puretzky, C. M. Rouleau, D. B. Geohegan, and G. Duscher, 2015,“Structure and formation mechanism of black TiO2 nanoparticles,”ACS Nano, 9(10), p.10482-10488.
31.H. Irie, Y. Watanabe, and K. Hashimoto, 2003,“Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst,” Chemistry Letters, 32(8), p.772-773.
32.C. D. Valentin, G. Pacchioni, and A. Selloni, 2005,“Theory of Carbon Doping of Titanium Dioxide,”Chemistry of Materials, 17(26), p.6656-6665.
33.S. Wang, L. Zhao, L. Bai, J. M. Yan, Q. Jiang, and J. S. Lian, 2014, “Enhancing photocatalytic activity of disorder-engineered C/TiO2 and TiO2 nanoparticles,”Journal of Materials Chemistry A, 2(20), p. 7439-7445.
34.L. Zhang, M. S. Tse, O. K. Tan, Y. X. Wang, and M. D. Han, 2013, “Facile fabrication and characterization of multi-type carbon-doped TiO2 for visible light-activated photocatalytic mineralization of gaseous toluene,”Journal of Materials Chemistry A, 1(14), p.4497-4507.
35.H. Gao, C. Ding, and D. Dai, 2010,“Density functional characterization of C-doped anatase TiO2 with different oxidation state. 2010,”Journal of Molecular Structure: THEOCHEM, 944(1-3), p.156-162.
36.L. W. Zhang, H. B. Fu, and Y. F. Zhu, 2008,“Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon,”Advanced Functional Materials, 18(15), p. 2180-2189.
37.S. V. Felip, 2011,“Nitride-based semiconductor nanostructures for applications in optical communications at 1.5 um,”University of Alcalá.
38.K. Sunada, Y. Kikuchi, K Hashimoto, and A. Fujishima, 1998, “Bactericidal and detoxification effects of TiO2 thin film photocatalysts,”Environmental Science and Technology, 32(5), p.726-728.
39.X. K. Chen, H. B. Huang, Z. W. Zeng, S. Y. Bai, and J. W. Tzai, 2011,“含EDTA鍋爐清洗廢水之處理,”Kun Shan University.
40.L. C. Wang, A. G. Jiang, X. X. Li, and H. R. Ding, 2007,“Treatment of boiler cleaning waste of EDTA by membrane technology with chemical pretreatment,”華東電力, 35(6), p.50-52.
41.T. D. C. Hobson, L. J. Phillips, O. S. Hutter, H. Shiel, J. E. N. Swallow, C. N. Savory, P. K. Nayak, S. Mariotti, B. Das, L. Bowen, L. A. H. Jones, T. J. Featherstone, M. J. Smiles, M. A. Farnworth, G. Zoppi, P. K. Thakur, T. L. Lee, H. J. Snaith, C. Leighton, D. O. Scanlon, V. R. Dhanak, K. Durose, T. D. Veal, and J. D. Major, 2020,“Isotype heterojunction solar cells using n-type Sb2Se3 thin films,”Chemistry of Materials, 32(6), p. 2621-2630.
42.M. Humayun, F. Raziq, A. Khan, and W. Luo, 2018,“Modification strategies of TiO2 for potential applications in photocatalysis: a critical review,”Green Chemistry Letters and Reviews, 11(2), p.86-102.
43.D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, and M. C. Thurnauer, 2003,“Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR,”The Journal of Physical Chemistry B, 107(19), p.4545-4549.
44.林麗娟, 1994,“X光繞射原理及其應用,”X光材料分析技術與應用專題.
45.A. Li, 2004,“Interaction of Nanoparticles with Radiation,” Astrophysics of Dust:ASP Conference Series, 309, p.417-452.
46.J. Tauc, R. Grigorovici, and A. Vancu, 1966,“Optical properties and electronic structure of amorphous germanium,”Physica Status Solidi B, 15(2), p.627-637.
47.E. A. Davis, and N. F. Mott, 1970,“Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,”Philosophical Magazine, 22(179), p. 0903-0922.
48.M. S. Wong, S. H. Wang, T. K. Chen, C. W. Weng, and K. K. Rao, 2007,“Co-sputtered carbon-incorporated titanium oxide films as visible light-induced photocatalysts,”Surface and Coatings Technology, 202(4), p.890-894.
49.翁群偉, 2007,“Photocatalytic properties of combinatorial co-sputtered carbon-titania composite films,”National Dong Hwa University, July.
50.L. Zhang, and R. V. Koka, 1998,“A study on the oxidation and carbon diffusion of TiC in alumina–titanium carbide ceramics using XPS and Raman spectroscopy,”Materials Chemistry and Physics, 57(1), p.23-32.
51.A. L. Linsebigler, G. Lu, and J. T. Yates, 1995,“Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chemical Reviews, 95(3), p.735-758.
52.J. G. Li, T. Ishigaki, and X. Sun, 2007,“Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties,”The Journal of Physical Chemistry C, 111(13), p.4969-4976.
53.M. C. Xu, Y. K. Gao, E. M. Moreno, M. Kunst, M. Muhler, Y. M. Wang, H. Idriss, and C. Wöll, 2011,“Photocatalytic Activity of Bulk TiO2 Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy,”Physical Review Letters, 106(13), p.138302.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *