帳號:guest(18.218.59.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:闕嘉逸
作者(英文):Chia-Yi Chueh
論文名稱:複合材料SrTiO3/graphene熱電性質傳輸之研究
論文名稱(英文):Thermoelectric properties of composites SrTiO3/graphene
指導教授:吳慶成
指導教授(英文):Ching-Cherng Wu
口試委員:蔡漢彰
郭永綱
口試委員(英文):Han-Chang Tsai
Yung-Kang Kuo
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610522018
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:48
關鍵詞:熱電材料顯微結構複合物鈦酸鍶石墨烯
關鍵詞(英文):thermoelectric propertiesmicrostructurecompositeSrTiO3graphene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏收藏:0
本論文針對 SrTiO3/graphene 複合材料分別以不同體積百分比(3%、4%、5%、7%、10%、12%)系列樣品,以XRD、XPS及FE-SEM進行顯微結構與成分分析,並於10至300 K溫度區間進行電阻率(ρ)、熱導率(κ)及熱電勢(S)之熱電物理性質之研究。
成分分析以及顯微結構分析中,XRD結果顯示石墨烯添加比例越多,於(002)位置的石墨烯訊號強度逐漸增加,而XPS量測結果比對database得知Sr價數為2+、Ti價數為4+ ,且C1s能譜圖於284.5 eV之束縛能對應到C-C單鍵,且確定此為sp^2鍵結軌域。FE-SEM形貌顯示出石墨烯以片狀微米尺度分佈於奈米尺度顆粒之SrTiO3塊材中。
熱電量測結果顯示,所有樣品皆呈半導體行為,且隨石墨烯添加比例上升其電阻率越小。Seebeck係數量測中發現在低溫段有n轉p-type的現象,而高溫段樣品主要載子皆為電洞,其中以SrTiO3+10 vol.% graphene室溫下Seebeck值為22 μV/K為最佳。熱傳導率部分,其熱傳導率在室溫時數值從0.7變化至3 (W/m K) ,且隨石墨烯比例添加越多熱導率越高,推測是由添加石墨烯的高熱導所致。
In this thesis, composites of SrTiO3/graphene with various volume fractions of 3%, 4%, 5%, 7%, 10% and 12% were prepared. The composition and microstructure of these composites were examined by X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and scanning electron microscope (FE-SEM). Besides, thermoelectric properties including electrical resistivity (), Seebeck coefficient (S), and thermal conductivity () were performed in the temperature range between 10 K and 300 K on these composites.
The XRD patterns of SrTiO3/graphene composites showed that the intensity of the dominant (002) diffraction peak of graphene increases with increasing graphene content. The XPS measurements revealed that the peak features of C1s showed C-C single bond and sp2 characteristics with the binding energy located at 284.5 eV. The microstructures of 5% SrTiO3/graphene composite clearly demonstrated that SrTiO3 particles aggregated with a size of few tenths nanometer and the transparent graphene micro-sheets randomly distributed in the SrTiO3 aggregations.
The electrical resistivity of the studied samples decreases with increasing temperature indicating the semiconducting nature of these composites. Besides, a substantial decrease in  was noticed with increasing graphene content. The Seebeck coefficient of all SrTiO3/graphene composites is positive at room temperature, suggesting that the p-type carriers dominate the thermoelectric transport. The thermal conductivity of these composites increases substantially with increasing graphene content, presumably due to the high thermal conductivity of graphene.
摘要 I
Abstract III
圖目錄 VII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究方向 2
第二章 基礎理論 3
2-1 材料基本特性 3
2-1-1 SrTiO3基本特性 3
2-1-2 Graphene基本特性 4
2-2 電阻率 5
2-3 熱電現象 6
2-3-1 Seebeck效應 6
2-3-2 Seebeck係數 8
2-4 熱傳導率 11
2-4-1 熱傳導係數 11
2-4-2聲子對熱傳導的影響 12
2-4-3電子對熱傳導的影響 15
第三章 實驗方法 17
3-1 實驗樣品製備 17
3-2 顯微結構與成分分析 18
3-2-1 X-Ray (X-ray diffractometer) 18
3-2-2 XPS(X-ray Photoelectron Spectrometer) 18
3-2-3場發射型掃描電子顯微鏡(FE-SEM) 18
3-3 量測系統與方法 19
3-3-1 低溫冷卻系統 19
3-3-2 電阻率量測方法 20
3-3-3 熱傳導率的量測 22
3-3-4 Seebeck 係數量測 23
3-4 實驗控制程式 24
第四章 實驗結果與分析 31
4-1 顯微結構與成分分析 31
4-1-1 X-Ray定性分析 31
4-1-2 XPS定性分析 32
4-1-3 FE_SEM顯微結構分析 35
4-3 電阻率量測結果分析 39
4-4 Seebeck係數量測分析 40
4-5 熱傳導率量測分析 42
4-6 熱電優質ZT 42
第五章 結論 45
參考文獻 47

1.熱電材料應用簡介 http://tns.ndhu.edu.tw/~ykkuo/thermoelectric.pdf 。〈檢索日期 2018/07/01〉
2.黃振東、徐振庭 熱電材料 科學發展 2013年6月 486期〈檢索日期 2018/07/01〉
3.Marques, Ana Claúdia Lourenço Santana. "Advanced Si pad detector development and SrTio3 studies by emission channeling and hyperfine interaction experiments." (2009).
4.林志堅 石墨烯與二維材料介紹http://cmnst.ncku.edu.tw/ezfiles/23/1023/img/2601/435955689.pdf。〈檢索日期 2018/07/01〉
5.Baran, Jakub D., et al. "Structural, Electronic, and Transport Properties of Hybrid SrTiO3-Graphene and Carbon Nanoribbon Interfaces." Chemistry of Materials 29.17 (2017): 7364-7370.
6.2017 Thermo Fisher Scientific Inc. https://xpssimplified.com/elements/carbon.php〈檢索日期 2018/07/01〉
7.Lin, Yue, et al. "Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene." ACS applied materials & interfaces7.29 (2015): 15898-15908.
8.Ryu, Hyejin, et al. "Temperature-Dependent Electron–Electron Interaction in Graphene on SrTiO3." Nano letters 17.10 (2017): 5914-5918.
9.Feng, Xiaopeng, et al. "Graphene promoted oxygen vacancies in perovskite for enhanced thermoelectric properties." Carbon 112 (2017): 169-176.
10.Feng, Bin, et al. "Enhanced thermoelectric properties of p-type CoSb 3/graphene nanocomposite." Journal of Materials Chemistry A 1.42 (2013): 13111-13119.
11.Zhao, Degang, Xuezhen Wang, and Di Wu. "Enhanced Thermoelectric Properties of Graphene/Cu2SnSe3 Composites." Crystals 7.3 (2017): 71.
12.Sun, Jifeng, and David J. Singh. "Thermoelectric properties of n-type SrTiO3." APL Materials 4.10 (2016): 104803.
13.Couto, Nuno JG, Benjamin Sacépé, and Alberto F. Morpurgo. "Transport through graphene on SrTiO 3." Physical review letters107.22 (2011): 225501.
14. Bach, P. L., et al. "Tuning the thermoelectric properties of SrTiO3 by controlled oxygen doping." arXiv preprint arXiv:1211.1615(2012).
15.Wang, Jun, et al. "High thermoelectric performance of niobium-doped strontium titanate bulk material affected by all-scale grain boundary and inclusions." Scripta Materialia 99 (2015): 25-28.
16.Wang, Hongchao, et al. "Recent development of n-type perovskite thermoelectrics." Journal of Materiomics 2.3 (2016): 225-236.
17.Muley, Sarang V., and N. M. Ravindra. "Thermoelectric properties of pristine and doped graphene nanosheets and graphene nanoribbons: Part I." JOM 68.6 (2016): 1653-1659.
18.Muley, Sarang V., and N. M. Ravindra. "Thermoelectric properties of pristine and doped graphene nanosheets and graphene nanoribbons: Part II." JOM 68.6 (2016): 1660-1666.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *