帳號:guest(3.12.160.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳家維
作者(英文):Chia-Wei Chen
論文名稱:以鉍或鎵摻入(鉛、碲、汞)共晶複合物的顯微結構及熱電性質探討
論文名稱(英文):Thermoelectric Properties of (HgTe0.55/PbTe0.45) Eutectic Composites Incorporated with Bismuth or Gallium
指導教授:吳慶成
指導教授(英文):Ching-Cherng Wu
口試委員:郭永綱
蔡漢彰
口試委員(英文):Yung-Kang Kuo
Han-Chang Tsai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610522019
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:110
關鍵詞:熱電材料直接淬火共晶複合物熱電優值
關鍵詞(英文):thermoelectric materialsdirect quenchingeutectic compositethe figure of merit
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏收藏:0
本研究以高溫熔融搖擺搭配直接淬火(Direct Quench)的方式製備出摻入鉍或鎵的(HgTe)0.55/(PbTe)0.45共晶複合物,摻入鉍或鎵的比例皆為x或y=0.01、0.03、0.05。使用X-ray繞射(XRD)、光學顯微鏡(OM)、場發式掃描式電子顯微鏡(FE-SEM)來分析其成份組成及顯微結構。熱電性質量測包含電阻率、Seebeck係數和熱傳導率隨溫度變化,量測溫度範圍在60~300 K,並計算其熱電優值ZT。
摻入鉍之(HgTe)0.55/(PbTe)0.45共晶複合物在電阻率方面呈現半導體特性;在Seebeck係數方面量x=0.01的樣品有p-type轉n-type的現象,x=0.03、0.05皆為n-type;x=0.05的樣品有最佳的Seebeck係數達到-154 μV/K;在熱傳導率方面皆隨溫度上升而下降;由上述熱電性質計算過後,最佳的熱電優值為x=0.03的樣品,歸因於其最高的Seebeck係數及較低的電阻率,在300 K時有最高的ZT值達到0.13。
摻入鎵之(HgTe)0.55/(PbTe)0.45共晶複合物在電阻率方面呈現金屬特性;在Seebeck係數方面量測溫度範圍內皆為n-type,y=0.05的樣品有最佳的Seebeck係數達到-122 μV/K;熱傳導率方面摻入鎵的樣品熱傳導率隨溫度變化較為平緩,在60 K時熱傳導率最低的為y=0.05的樣品約為8 mW/cm-K左右;由上述熱電性質計算過後,最佳的熱電優值為y=0.01的樣品,歸因於其最低電阻率,及較高的 Seebeck係數,在300 K時有最高的ZT值達到0.06。
由實驗中可發現到摻入鉍和鎵的電阻率雖然差異不大,但摻入鉍之共晶複合物在電阻率方面呈現半導體特性,而摻入鎵之共晶複合物在電阻率方面則呈現金屬特性;由XRD分析可看出鉍的摻入取代了汞和鉛,而鎵則是取代了汞和碲,此一選擇性取代是值得探討的特殊現象。
所有樣品中,以摻入鉍之比例x=0.03的樣品在300 K時有最佳的ZT值0.13,與未摻雜的HgTe/PbTe共晶複合物相比高出許多,代表適當摻入鉍能有效改變載子濃度,提升材料電傳輸特性,增益熱電優值。
In this study, (HgTe)0.55/(PbTe)0.45 eutectic composites incorporated with bismuth or gallium were synthesized using direct quenching method respectively. The composition and microstructure of these eutectic composites were examined by optical microscope, X-ray diffraction and scanning electron microscope. The thermoelectric properties for these eutectic composites were studied by means of thermal and electrical transport measurement in the temperature range between 60 K and 300 K. The temperature dependence of the thermoelectric properties of (HgTe)0.55/(PbTe)0.45 eutectic composites incorporated with bismuth or gallium were discussed.
The resistivity of Bi-incorporated (HgTe)0.55/(PbTe)0.45 eutectic composites decrease with raising temperature, showing semiconducting properties. The seebeck coefficient of the [(HgTe)0.55/(PbTe)0.45]0.99Bi0.01 eutectic composites change from positive to negative value. Another eutectic composites show n-type conducting and the seebeck coefficient of [(HgTe)0.55/(PbTe)0.45]0.95Bi0.05 achieved -154 μV/K at 300 K. The thermal conductivity of these eutectic composites decrease with raising temperature. The [(HgTe)0.55/(PbTe)0.45]0.97Bi0.03 eutectic composite exhibits the maximum ZT=0.13 at 300 K.
The resistivity of Ga-incorporated (HgTe)0.55/(PbTe)0.45 eutectic composites increase with raising temperature, showing metallic properties. All these composites show n-type conducting and the seebeck coefficient of [(HgTe)0.55/(PbTe)0.45]0.95Ga0.05 achieved -122 μV/K at 300 K. The [(HgTe)0.55/(PbTe)0.45]0.95Ga0.05 eutectic composite has the lowest thermal conductivity about 8 mW/cm-K at 300 K. The [(HgTe)0.55/(PbTe)0.45]0.99Ga0.01 eutectic composite has the lowest resistivity and it exhibits the maximum ZT=0.06 at 300 K.
The maximum figure of merit ZT was obtained as 0.13 in the sample [(HgTe)0.55/(PbTe)0.45]0.97Bi0.03 at 300 K, this value is much higher than that of pure HgTe-PbTe eutectic composite.
目錄 I
圖目錄 III
第一章 緒論 1
1-1前言 1
1-2研究動機 2
第二章 理論基礎與文獻回顧 3
2-1 材料基本特性 3
2-1-1 PbTe基本特性[14] 3
2-1-2 HgTe基本特性[15, 16] 4
2-1-3 HgTe-PbTe偽二元相圖[17] 4
2-2 熱電理論 5
2-2-1 Seebeck效應[18] 6
2-2-2 Peltier效應[18] 6
2-2-3 Thomson效應[18] 7
2-3 熱電材料物理性質 8
2-3-1 電阻率 8
2-3-2 Seebeck係數 9
2-3-3 熱傳導現象 10
2-3-3-1 電子對熱傳導的影響 11
2-3-3-2 聲子對熱傳導的影響 11
第三章 實驗方法與步驟 15
3-1 實驗方法 15
3-2 實驗步驟 17
3-2-1 石英管之前處理 17
3-2-2 元素秤重及封管 18
3-2-3 高溫搖擺即直接淬火 20
3-3 樣品製備與量測 22
3-3-1 電阻率樣品製備與量測 22
3-3-2 熱傳導率與Seebeck係數樣品製作及量測 23
3-3-3 熱電量測系統及控制程式 24
3-4 顯微結構與成分分析 27
3-4-1 XRD(X-ray diffractometer) 27
3-4-2 場發射型掃描式電子顯微鏡(FE-SEM) 27
第四章 實驗結果與討論 28
第一部份:摻入鉍之共晶複合物樣品 29
4-1 顯微結構與成分分析 29
4-1-1 XRD分析 29
4-1-2 光學顯微鏡分析 33
4-1-3 電子顯微鏡分析 50
4-2 熱電性質量測分析 62
4-2-1 電阻率 62
4-2-2 Seebeck係數 63
4-2-3 熱傳導率 64
4-2-4 熱電優值ZT 65
第二部份:摻入鎵之共晶複合物樣品 66
4-3 顯微結構與成分分析 66
4-3-1 XRD分析 66
4-3-2 光學顯微鏡分析 70
4-3-3 電子顯微鏡分析 87
4-4 熱電性質量測分析 99
4-4-1 電阻率 99
4-4-2 Seebeck係數 101
4-4-3 熱傳導率 102
4-4-4 熱電優值ZT 105
第五章 結論 106
參考文獻 108

1. Biswas, K., et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012. 489(7416): p. 414-418.
2. Tsai, B. and K. Cheng. Thermoelectric properties of the difference between Zn3. 9 Sb3 and Zn4 Sb3. in Innovation in Design, Communication and Engineering: Proceedings of the 2014 3rd International Conference on Innovation, Communication and Engineering (ICICE 2014), Guiyang, Guizhou, PR China, October 17-22, 2014. 2015. CRC Press.
3. Zhang, Y., et al., Enhanced thermoelectric performance of nanostructured CNTs/BiSbTe bulk composite from rapid pressure-quenching induced multi-scale microstructure. Journal of Materiomics, 2016. 2(4): p. 316-323.
4. Fuccillo, M.K., et al., Low temperature thermoelectric properties of Bi2− xSbxTeSe2 crystals near the n–p crossover. Solid State Communications, 2012. 152(14): p. 1208-1211.
5. Cho, W.-S., S.-W. Choi, and K. Park, Microstructure and thermoelectric properties of p-type Fe0. 9Mn0. 1Si2 compounds prepared by pressureless sintering. Materials Science and Engineering: B, 1999. 68(2): p. 116-122.
6. Wu, F., et al., Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing. Progress in Natural Science-Materials International, 2017. 27(2): p. 203-207.
7. Yang, L., et al., n-type Bi-doped PbTe nanocubes with enhanced thermoelectric performance. Nano Energy, 2017. 31: p. 105-112.
8. Zeier, W.G., New tricks for optimizing thermoelectric materials. Current Opinion in Green and Sustainable Chemistry, 2017. 4: p. 23-28.
9. Gelbstein, Y., Z. Dashevsky, and M. Dariel, High performance n-type PbTe-based materials for thermoelectric applications. Physica B: Condensed Matter, 2005. 363(1-4): p. 196-205.
10. Zhang, Y., et al., Eutectic microstructures and thermoelectric properties of MnTe-rich precipitates hardened PbTe. Acta Materialia, 2016. 111: p. 202-209.
11. Androulakis, J., et al., Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb1-x Sn x Te− PbS. Journal of the American Chemical Society, 2007. 129(31): p. 9780-9788.
12. Hicks, L. and M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993. 47(19): p. 12727.
13. <劉昌翰,以碘或銦摻入(鉛、碲、汞)共晶複合物.106.pdf>.
14. Lide, D.R., Handbook of Chemistry and Physics, 1998. 1998, CRC Press: Boca Raton, FL.
15. Brice, J. and P. Capper, Properties of mercury cadmium telluride. 1987: Sl.
16. Capper, P., Properties of narrow gap cadmium-based compounds. 1994: Iet.
17. Tomashyk, V., P. Feychuk, and L. Shcherbak, Ternary alloys based on II-VI semiconductor compounds. 2013: CRC Press.
18. Bhandari, C. and D.M. Rowe, CRC Handbook of thermoelectrics. CRC Press, Boca Raton, FL, 1995: p. 49.
19. <鮑宣維,三種型式共晶複合物之顯微結構與熱電性質分析.105.pdf>.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *