|
1 Peierls, R. Quelques proprietes typiques des corpses solides. Ann. IH Poincare 5, 177-222, (1935). 2 Landau, L. Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion 11, 26-35, (1937). 3 Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669, (2004). 4 Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat Mater 6, 183-191, (2007). 5 Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425, (2013). 6 Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nature Photonics 8, 899-907, (2014). 7 Ceballos, F. & Zhao, H. Ultrafast Laser Spectroscopy of Two-Dimensional Materials Beyond Graphene. Advanced Functional Materials 27, (2017). 8 Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat Mater 16, 170-181, (2017). 9 Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7, 699-712, (2012). 10 Lu, A. Y. et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol 12, 744-749, (2017). 11 Li, Y. et al. Optical identification of layered MoS2 via the characteristic matrix method. Nanoscale 8, 1210-1215, (2016). 12 Chen, K.-C., Chu, T.-W., Wu, C.-R., Lee, S.-C. & Lin, S.-Y. Layer number controllability of transition-metal dichalcogenides and the establishment of hetero-structures by using sulfurization of thin transition metal films. Journal of Physics D: Applied Physics 50, (2017). 13 Wu, C. R., Chu, T. W., Chen, K. C. & Lin, S. Y. Preparation of Large-area Vertical 2D Crystal Hetero-structures Through the Sulfurization of Transition Metal Films for Device Fabrication. J Vis Exp, (2017). 14 Wu, C. R., Chang, X. R., Wu, C. H. & Lin, S. Y. The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment. Sci Rep 7, 42146, (2017). 15 Coehoorn, R. et al. Electronic structure ofMoSe2,MoS2, andWSe2. I. Band-structure calculations and photoelectron spectroscopy. Physical Review B 35, 6195-6202, (1987). 16 Coehoorn, R., Haas, C. & de Groot, R. A. Electronic structure ofMoSe2,MoS2, andWSe2. II. The nature of the optical band gaps. Physical Review B 35, 6203-6206, (1987). 17 Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS(2): a new direct-gap semiconductor. Phys Rev Lett 105, 136805, (2010). 18 Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett 10, 1271-1275, (2010). 19 Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat Nanotechnol 6, 147-150, (2011). 20 Huo, N., Gupta, S. & Konstantatos, G. MoS2 -HgTe Quantum Dot Hybrid Photodetectors beyond 2 microm. Adv Mater 29, (2017). 21 Amani, M. et al. Near-unity photoluminescence quantum yield in MoS(2). Science 350, 1065-1068, (2015). 22 Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Physical Review B 77, (2008). 23 Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 3, 887, (2012). 24 Xiao, D., Liu, G. B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108, 196802, (2012). 25 Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7, 494-498, (2012). 26 Mai, C. et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett 14, 202-206, (2014). 27 Wang, Y. T. et al. Ultrafast multi-level logic gates with spin-valley coupled polarization anisotropy in monolayer MoS2. Sci Rep 5, 8289, (2015). 28 Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nature Photonics 12, 451-460, (2018). 29 Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2. Phys Rev Lett 112, 047401, (2014). 30 張玉明. 半導體的超快物理現象研究. 自然科學簡訊 第十八卷, (2006). 31 王銘崧. 摻雜矽氮化銦薄膜之載子釋放機制研究. 碩士論文, 國立中山大學 物理學系研究所, (2011). 32 Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Applied Physics Letters 99, (2011). 33 Sim, S. et al. Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics. Physical Review B 88, (2013). 34 Palummo, M., Bernardi, M. & Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett 15, 2794-2800, (2015). 35 Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Physical Review B 93, (2016). 36 Seo, M. et al. Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes. Sci Rep 6, 21601, (2016). 37 Yuan, L., Wang, T., Zhu, T., Zhou, M. & Huang, L. Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors. J Phys Chem Lett 8, 3371-3379, (2017). 38 Kime, G. et al. Ultrafast Charge Dynamics in Dispersions of Monolayer MoS2 Nanosheets. The Journal of Physical Chemistry C 121, 22415-22421, (2017). 39 Nie, Z. et al. Ultrafast Carrier Thermalization and Cooling Dynamics in Few-Layer MoS2. ACS Nano, 10931-10940, (2014). 40 Wang, L. et al. Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer. Nat Commun 8, 13906, (2017). 41 Wang, H., Zhang, C. & Rana, F. Surface Recombination Limited Lifetimes of Photoexcited Carriers in Few-Layer Transition Metal Dichalcogenide MoS(2). Nano Lett 15, 8204-8210, (2015). 42 Wang, H., Zhang, C. & Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett 15, 339-345, (2015). 43 洪勝富 & 齊正中. 時間解析激發-探測技術. 物理雙月刊 二十五卷, (1998).
|