帳號:guest(3.141.27.207)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:黃永鴻
作者(英文):Yung-Hung Huang
論文名稱:可層數控制之二硫化鉬薄膜的超快激發-探測瞬間吸收光譜之研究
論文名稱(英文):Ultrafast Pump-probe Transient Absorption Spectroscopy of Layer-controllable Molybdenum Disulfide Films
指導教授:陳怡嘉
呂宥蓉
指導教授(英文):Yi-Jia Chen
Yu-Jung Lu
口試委員:陳怡嘉
林時彥
呂宥蓉
口試委員(英文):Yi-Jia Chen
Shih-Yen Lin
Yu-Jung Lu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610522021
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:63
關鍵詞:可層數控制激發-探測原理過渡金屬硫化物二硫化鉬薄膜超快物理現象
關鍵詞(英文):Layer-controllablePump-Probe Transient Absorption TechniqueTransition Metal DichalcogenidesMolybdenum Disulfide FilmsUltrafast Dynamics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏收藏:0
本篇論文,我們使用激發-探測原理的時間解析光譜技術分析不同層數控制成長的二硫化鉬薄膜之超快激發-探測瞬間吸收光譜。在瞬間吸收光譜的分析裡面,我們可以同時得到吸收峰、放光峰的資訊,並且根據這些峰值,我們可以進一步擬合對應的衰減曲線,得到與載子、激子等相關的生命週期訊息。並且我們也比較不同成長方式的單層二硫化鉬薄膜,比較之間有何種差異性,來探討可能的載子傳輸機制。以及討論二硫化鉬薄膜對於不同層數、不同光學圓偏振特性之激發光束等參數是否有差異性,及背後代表那些可能的物理機制。
第一個章節,我們首先回顧近期對於二維材料的研究,並以我們研究的材料二硫化鉬薄膜為例,說明相關的光學特性,以及闡述我們對於二硫化鉬薄膜的研究動機。下一個章節,我們則說明一般半導體的超快物理現象,接者回顧近年來對於二維過渡金屬硫化物的超快物理現象研究,與我們設計的瞬間吸收光譜實驗相比,有哪些差異性,以及對於應用層面來說可以提供哪些必要的物理參數作為成長製程、元件設計之參考。第三個部分,我們將逐步說明激發-探測原理是建立在哪些基礎之上,以及介紹使用的實驗設備。第四個部分則是關於實驗結果與討論。最後一個部分,我們總結了可層數控制成長的二硫化鉬薄膜之超快激發-探測瞬間吸收光譜的研究,以及未來展望。
因此,從瞬間吸收光譜的量測中,我們得到了二硫化鉬具有五個特徵峰,激發態吸收、介於A-激子(A-exciton)和B-激子(B-exciton)之間的吸收、能隙之間由缺陷、雜質造成的吸收、A-激子(A-exciton)、B-激子(B-exciton)等五種情形,單層二硫化鉬的特徵峰之生命週期τfast分佈在30 ps以內、生命週期τslow則分佈在20~60 ps之間,以及從單層增加到五層二硫化鉬時,特徵峰的生命週期τfast分佈範圍則提高到120 ps以內,生命週期τslow則分佈在350 ps以內,說明了量測的時間尺度涵蓋了非熱平衡區、熱載子時區、等溫時區等動力學行為,而這樣的結果則會大幅度複雜化訊號的分析,因此只有激發態吸收峰、能隙之間的吸收峰二者的生命週期明顯地隨著層數增加而增加。對於左旋、右旋激發光(Pump)對於二硫化鉬的影響,則只有五層的樣品很明顯地隨著激發光特性改變,這可能是因為在室溫下量測,聲子的參與干擾了量測結果,或者是因為沒有考量到探測光(Probe)的左旋、右旋特性等等因素。
In this thesis, we focus on the ultrafast dynamics of layer-controllable molybdenum disulfide films by using the pump-probe transient absorption technique. In addition, we compare the different fabrication process of molybdenum disulfide films. We verify the optical selection rule in molybdenum disulfide films by change the polarization properties of pump.
In the first chapter, we introduce the recently research in two-dimensional material and include the molybdenum disulfide, which is in the family of the two-dimensional transition metal dichalcogenides. Next chapter, we introduce the ultrafast dynamics in the semiconductor and the two-dimensional transition metal dichalcogenides. The third part, we explain what is the pump-probe transient absorption technique and show the equipment used in all experiments. The fourth part is about the experiment result and discussion. Moreover, the final part, we conclude our study of the ultrafast pump-probe transient absorption spectroscopy of layer-controllable molybdenum disulfide films.
Then, we observed the five characteristic peaks of molybdenum disulfide, the excited absorption, the absorption between A-exciton and B-exciton, and the interband absorption results from the defect and impurities, A-exciton, B-exciton, from the measurement of the transient absorption spectroscopy. The lifetime τfast of monolayer molybdenum disulfide is in the range of 30 ps and the lifetime τslow is between 20~60 ps. With the increasing layer number of molybdenum disulfide from monolayer to five layers, the range of lifetime τfast and lifetime τslow are increased to 120 ps and 350 ps respectively, which explains the results throughout the timescale of non-thermal regime, hot-carrier regime and isothermal regime but would substantially complicate the analysis of collected signals. Therefore, we could only say that the lifetime of excited absorption and interband absorption are increasing with the increasing layer number of molybdenum disulfide. Finally, the signals of the five layers molybdenum disulfide is changed obviously by the circular polarization of Pump than other samples, which explained that we may consider the effect of phonon under room temperature or the condition of the circular polarization of Probe.
第1章 緒論 1
1.1 研究動機 1
1.2 二維材料的發展 2
1.3 二維材料的介紹 3
1.4 二維過渡金屬硫化物 6
第2章 超快物理現象 15
2.1 半導體材料的超快物理現象 15
2.2 二維材料的超快物理現象 19
第3章 實驗方法與設備介紹 21
3.1 時間解析激發-探測技術 21
3.1.1 時間解析激發-探測技術的原理 21
3.2 拉曼光譜 23
3.3 可見光吸收光譜 23
3.4 光激發螢光光譜 23
3.5 摻鈦藍寶石雷射系統 24
3.6 光學參數放大器 26
3.7 激發-探測瞬間吸收光譜量測系統 27
3.8 拉曼及螢光光譜量測系統 31
3.9 紫外光/可見光分光光譜儀 32
第4章 結果與討論 33
4.1 不同激發功率對二硫化鉬的影響 34
4.2 成長方式對二硫化鉬的影響 35
4.3 不同層數對二硫化鉬的影響 43
4.4 左旋、右旋激發光對二硫化鉬的影響 53
4.5 小結 58
第5章 結論與未來展望 59
5.1 結論 59
5.2 未來展望 59
參考文獻REFERENCES 61
1 Peierls, R. Quelques proprietes typiques des corpses solides. Ann. IH Poincare 5, 177-222, (1935).
2 Landau, L. Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion 11, 26-35, (1937).
3 Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669, (2004).
4 Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat Mater 6, 183-191, (2007).
5 Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425, (2013).
6 Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nature Photonics 8, 899-907, (2014).
7 Ceballos, F. & Zhao, H. Ultrafast Laser Spectroscopy of Two-Dimensional Materials Beyond Graphene. Advanced Functional Materials 27, (2017).
8 Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat Mater 16, 170-181, (2017).
9 Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7, 699-712, (2012).
10 Lu, A. Y. et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol 12, 744-749, (2017).
11 Li, Y. et al. Optical identification of layered MoS2 via the characteristic matrix method. Nanoscale 8, 1210-1215, (2016).
12 Chen, K.-C., Chu, T.-W., Wu, C.-R., Lee, S.-C. & Lin, S.-Y. Layer number controllability of transition-metal dichalcogenides and the establishment of hetero-structures by using sulfurization of thin transition metal films. Journal of Physics D: Applied Physics 50, (2017).
13 Wu, C. R., Chu, T. W., Chen, K. C. & Lin, S. Y. Preparation of Large-area Vertical 2D Crystal Hetero-structures Through the Sulfurization of Transition Metal Films for Device Fabrication. J Vis Exp, (2017).
14 Wu, C. R., Chang, X. R., Wu, C. H. & Lin, S. Y. The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment. Sci Rep 7, 42146, (2017).
15 Coehoorn, R. et al. Electronic structure ofMoSe2,MoS2, andWSe2. I. Band-structure calculations and photoelectron spectroscopy. Physical Review B 35, 6195-6202, (1987).
16 Coehoorn, R., Haas, C. & de Groot, R. A. Electronic structure ofMoSe2,MoS2, andWSe2. II. The nature of the optical band gaps. Physical Review B 35, 6203-6206, (1987).
17 Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS(2): a new direct-gap semiconductor. Phys Rev Lett 105, 136805, (2010).
18 Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett 10, 1271-1275, (2010).
19 Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat Nanotechnol 6, 147-150, (2011).
20 Huo, N., Gupta, S. & Konstantatos, G. MoS2 -HgTe Quantum Dot Hybrid Photodetectors beyond 2 microm. Adv Mater 29, (2017).
21 Amani, M. et al. Near-unity photoluminescence quantum yield in MoS(2). Science 350, 1065-1068, (2015).
22 Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Physical Review B 77, (2008).
23 Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 3, 887, (2012).
24 Xiao, D., Liu, G. B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108, 196802, (2012).
25 Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7, 494-498, (2012).
26 Mai, C. et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett 14, 202-206, (2014).
27 Wang, Y. T. et al. Ultrafast multi-level logic gates with spin-valley coupled polarization anisotropy in monolayer MoS2. Sci Rep 5, 8289, (2015).
28 Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nature Photonics 12, 451-460, (2018).
29 Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2. Phys Rev Lett 112, 047401, (2014).
30 張玉明. 半導體的超快物理現象研究. 自然科學簡訊 第十八卷, (2006).
31 王銘崧. 摻雜矽氮化銦薄膜之載子釋放機制研究. 碩士論文, 國立中山大學 物理學系研究所, (2011).
32 Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Applied Physics Letters 99, (2011).
33 Sim, S. et al. Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics. Physical Review B 88, (2013).
34 Palummo, M., Bernardi, M. & Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett 15, 2794-2800, (2015).
35 Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Physical Review B 93, (2016).
36 Seo, M. et al. Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes. Sci Rep 6, 21601, (2016).
37 Yuan, L., Wang, T., Zhu, T., Zhou, M. & Huang, L. Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors. J Phys Chem Lett 8, 3371-3379, (2017).
38 Kime, G. et al. Ultrafast Charge Dynamics in Dispersions of Monolayer MoS2 Nanosheets. The Journal of Physical Chemistry C 121, 22415-22421, (2017).
39 Nie, Z. et al. Ultrafast Carrier Thermalization and Cooling Dynamics in Few-Layer MoS2. ACS Nano, 10931-10940, (2014).
40 Wang, L. et al. Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer. Nat Commun 8, 13906, (2017).
41 Wang, H., Zhang, C. & Rana, F. Surface Recombination Limited Lifetimes of Photoexcited Carriers in Few-Layer Transition Metal Dichalcogenide MoS(2). Nano Lett 15, 8204-8210, (2015).
42 Wang, H., Zhang, C. & Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett 15, 339-345, (2015).
43 洪勝富 & 齊正中. 時間解析激發-探測技術. 物理雙月刊 二十五卷, (1998).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *