帳號:guest(3.135.208.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:蔡濟羽
作者(英文):Chi-Yu Tsai
論文名稱:以分子束磊晶成長氮化鎵薄膜於二硫化鉬之特性分析
論文名稱(英文):Analysis of GaN Grown on MoS2 Substrate Prepared with Plasma-Assisted Molecular Beam Epitaxy
指導教授:余英松
指導教授(英文):Ing-Song Yu
口試委員:黃清安
廖威勝
口試委員(英文):Ching-An Huang
Wei-Sheng Liao
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610522022
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:111
關鍵詞:氮化鎵分子束磊晶二硫化鉬脈衝雷射鍍膜藍寶石
關鍵詞(英文):GaNPAMBEMoS2PLDSapphire
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏收藏:0
本研究將利用脈衝雷射鍍膜沉積方式來成長大面積且高品質的二硫化鉬二維材料,接著再以分子束磊晶方式低溫成長高品質的氮化鎵薄膜材料,來探討氮化鎵化合物半導體材料在二維材料二硫化鉬上的成長機制,目標成長大面積(直徑兩吋)之高品質氮化鎵薄膜於二硫化鉬材料上, 並且研究氮化鎵與二硫化鉬異質磊晶接面之光電物理特性。
主要探討不同的成長溫度、基板差異、成長時間及成長前先行預氮是否會影響氮化鎵的成長機制。利用反射式高能量電子繞射儀(Reflection High Energy Electron Diffraction, RHEED)同步觀察氮化鎵成長前後表面繞射圖,初步判斷結晶品質,再以場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM)及園子力顯微鏡(Atomic Force Microscope, AFM)進行表面形貌的觀察,透過高解析X光繞射儀(High Resolution X-ray Diffraction, HR-XRD)進行微結構及鍍膜品質之分析,最後以X射線光電子能譜(X-ray photoelectron spectroscopy, XPS)、拉曼光譜(Raman Spectroscope)及光致發光螢光光譜(Photoluminescence spectroscope, PL spectroscopy)進行表面成分分析和材料光學特性量測,並進一步研究氮化鎵與二硫化鉬異質磊晶接面之光電物理特性。
由實驗結果可以清楚看到,對於不同基板而言,以脈衝雷射沉積 (Pulsed Laser Deposition,的PLD) 磊晶的二硫化鉬作為基板成長出的氮化鎵薄膜,不論是在表面形貌、光學特性及品質都優於化學沉積(chemical vapor deposition, CVD)磊晶的二硫化鉬基板。此外,當溫度升高至700℃ 磊晶時間延長至60分鐘,所成長的氮化鎵具有最佳的薄膜品質。
In this study, we used pulsed laser deposition (PLD) to grow large area and high quality two dimension material MoS2, and then deposited GaN films on this substrate by plasma-assisted molecular beam epitaxy (PAMBE). We investigate the growth mechanism, surfacr morphology, composition and optical properties of GaN on MoS2/c-sapphire, in order to obtain large area(2 inch) and high quality GaN.
We report the effects of substreate, temperature, growth time, and pre-nitridation time on the growth of GaN film by PAMBE. The morphology and topography were found to be different from Reflection High Energy Electron Diffraction (RHEED), Field Emission Scanning Electron Microscope (FE-SEM), and Atomic Force Microscope (AFM). High structural quality were observed from High Resolution X-ray Diffraction (HR-XRD). Surface composition and atomic-bond were studies by XPS. Furthermore, we used Raman measurements, photoluminescence to show the optical properties.
Here we show that MoS2 grown by PLD can be used as ideal substrate for the growth of high quality GaN. Growth temperature (700℃) and growth time (60 mins) were found to critically impact the quality of films grown. The GaN films under optimal condition were found to be of high structure quality from the characterization.
摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1前言 1
1.2氮化鎵特性 2
1.3二維材料特性 3
1.4文獻回顧 4
1.4.1成長二硫化鉬基板文獻回顧 4
1.4.2在二硫化鉬基板上成長氮化鎵文獻回顧 7
1.5研究動機 11
第二章 儀器介紹與原理 13
2.1電漿輔助式分子束磊晶系統(Plasma-Assisted Molecular Beam Epitaxy, PA-MBE) 13
2.1.1 分子束磊晶真空腔體與汞浦裝置 14
2.1.2 材料源與磊晶裝置 15
2.1.3 附屬分析儀器 16
2.2反射式高能量電子繞射儀(Reflection High Energy Electron Diffraction, RHEED) 18
2.3場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy) 21
2.4 X射線光電子能譜(X-ray photoelectron spectroscopy,XPS) 24
2.5 (高解析)X光繞射儀((High Resolution) X-ray Diffraction, (HR-)XRD) 25
2.6光致發光螢光光譜(Photoluminescence spectroscopy , PL spectroscopy) 28
2.7原子力顯微鏡(Atomic force microscopy,AFM) 29
2.8拉曼光譜(Raman spectroscopy) 31
第三章 實驗流程與方法 33
3.1前置作業 33
3.1.1系統超高真空環境的建立 33
3.1.2鎵鍍源流量檢測 34
3.2 基板的清洗處理 35
3.2.1 藍寶石和二硫化鉬基板清洗 35
3.3磊晶流程 38
3.4實驗參數的設定 41
第四章 實驗結果與討論 43
4.1 分子束磊晶系統流量測試結果 43
4.2不同基板對氮化鎵薄膜的影響 45
4.2.1 實驗結果與討論 46
4.2.2 不同基板之氮化鎵磊晶結論 62
4.3不同成長溫度對氮化鎵薄膜的影響 63
4.3.1 實驗結果與討論 64
4.3.2不同溫度磊晶氮化鎵薄膜結論 76
4.4不同成長時間對氮化鎵薄膜的影響 77
4.4.1實驗結果與討論 78
4.4.2不同時間磊晶氮化鎵薄膜結論 88
4.5預氮對氮化鎵磊晶的影響 89
4.5.1實驗結果與討論 90
4.5.2有無預氮之磊晶氮化鎵薄膜結論 98
第五章 結論 99
參考文獻 101
附錄 109
[1] S. Nakamura,“GaN growth using GaN buffer layer,” Japanese Journal of Applied Physics, 30 (10A) (1991) L1705.
[2] S. J. Pearton, F. Ren, A. P. Zhang, K. P. Lee, “Fabrication and performance of GaN electronic devices,” Materials Science and Engineering: R: Reports, 30 (3) (2000) 55-212.
[3] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Japanese Journal of Applied Physics, 35 (2B) (1996) L217.
[4] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, M. Sano, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Applied Physics Letters, 72 (2) (1998) 211-213.
[5] S. Nakamura, T. Mukai, M. Senoh, “High‐brightness InGaN/AlGaN double‐heterostructure blue‐green‐light‐emitting diodes,” Journal of Applied Physics, 76 (12) (1994) 8189-8191.
[6] Y. F.Wu., A.Saxler, Moore, M., Smith, R. P., Sheppard, S., Chavarkar, P. M., & Parikh, P. 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Letters, 25(3) (2004) 117-119.
[7] A. Das, L. B. Chang, C. S. Lai, R. M. Lin, F. C. Chu, M. J. Jeng, “GaN thin film based light addressable potentiometric sensor for pH sensing application,” Applied Physics Express, 6(3) (2013) 036601.
[8] F. Li, S. H. Lee, J. H. You, T. W. Kim, K. H. Lee, J. Y. Lee, T. W. Kang, “UV photovoltaic cells fabricated utilizing GaN nanorod/Si heterostructures,” Journal of Crystal Growth, 312(16) (2010) 2320-2323.
[9] S. J. Pearton, J. C. Zolper, R. J. Shul, F. Ren, “GaN: Processing, defects, and devices,” Journal of applied physics, 86(1) (1999) 1-78.
[10] K. Chung, C. H. Lee, G.-C. Yi, “Transferable GaN Layers Growth on ZnO-Coated Graphene Layers for Optoelectronic Devices”, Science, 330 (2010) 665.
[11] A. Trampert, O. Brandt, H. Yang, K. H. Ploog, “Direct observation of the initial nucleation and epitaxial growth of metastable cubic GaN on (001) GaAs,” Applied physics letters, 70(5), 583-585.
[12] M. T. Hoang, J. Yvonnet, A. Mitrushchenkov, G. Chambaud, “First-principles based multiscale model of piezoelectric nanowires with surface effects,” Journal of Applied Physics, 113(1), 014309.
[13]陳宗廷,在GaN-template上以電漿輔助分子束磊晶成長之高銦組成氮化銦鎵/氮化鎵量子井特性研究,國立中山大學物理研究所 碩士論文,民國102年8月
[14] B. Radisavljevic, A. Radenovic, J. Brivio, etal., “Single-layer MoS2 transistors,” Nature Nano technology, 2011,6:147~150.
[15] J. N. Coleman, M. Lotya, A. ONeill, etal., “Two-dimensional nanosheets produced by liquid exfoliationoflayered materials.” Science,2011, 331:568~571.
[16] A. Kuc, N. Zibouche, T. Heine, “Influenceofquantum confinement on the electronic structure of the transition metalsufide TS2,” Physical Review B, 2011 , 83: 245213 ~ 245216.
[17] Liu, Hongfei; K. K. Antwi, Ansah; Ying, Jifeng; et al., “Towards large area and continuous MoS2 atomic layers via vapor-phase growth” thermal vapor sulfurization Nanotechnology 25(2014) 405702 (11pp).
[18] Y. T. Ho, C. H. Ma, T. T. Luong, L. L. Wei, T. C. Yen, W. T. Hsu, W. H. Chang, Y. C. Chu, Y. Yi.Tu, K. P. Pande, E. Y. Chang, “Layered MoS2 grown on c-sapphire by pulse laser deposition”, Phys. Status Solid RRL 9, 3 (2015) 187-191.
[19] Claudy R. Serrao, Anthony M. Diamond, Shang-Lin Hsu, Long You, Sushant Gadgil, James Clarkson, Carlo Carraro, Roya Maboudian, Chenming Hu, Sayeef Salahuddin, “Highly crystalline MoS2 thin films grown by pulse laser deposition”, Appl. Phys. Lett, 106, (2015) 052101.
[20] A. Yamada, K. P. Ho, T. Maruyama, K. Akimoto, “Molecular beam epitaxy of GaN on a substrate of MoS2 layered compound”, Appl. Phys. A, 69 (1999) 82-92.
[21] A. Priti Gupta, A. Rahman, Shruti Subramanian, Shalini Gupta, Arumugam Thamizhavel, Tatyana Orlova, Sergei Rouvimov, Suresh Vishwanath, Vladimir Protasenko, Masihhur R. Laskar, Huili Grace Xing, Debdeep Jena, Arnab Bhattacharya, “Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth”, Scientific Reports, 6 (2016) 23708.
[22]Applied Physics Letters 109, 032104 (2016); doi: 10.1063/1.4959254
[23] Pawan Mishra, Malleswararao Tangi, Tien Khee Ng, Mohamed Nejib Hedhill, Dalaver H. Anjum, Mohd Sharizal Alias, Chien-chih Tseng, Lain-Jong Li, Boon S. Ooi, “Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy”, Appl. Phys. Lett, 110 (2017) 012101.
[24] Malleswararao Tangi, Pawan Mishra, Chien-Chih Tseng, Tien Khee Ng, Mohamed Nejib Hedhili, Dalaver H. Anjum, Mohd Sharizal Alias, Nini Wei, Lain-Jong Li, Boon S. Ooi, Band Alignment at GaN/Single-Layer WSe2 Interface, ACS Applied Materials and Interfaces, 9 (2017) 9110-9117.
[25] A. Y. Cho, J. R. Arthur, “Molecular beam epitaxy,” Progress in solid state
chemistry, 10, 157-191.
[26] J. Osaka, M. Senthil Kumar, H. Toyoda, T. Ishijima, H. Sugai, T. Mizutani,
“Role of atomic nitrogen during GaN growth by plasma-assisted molecular beam
epitaxy revealed by appearance mass spectrometry,” Applied physics letters, 90(17),
172114.
[27] J. M. Myoung, O. Gluschenkov, K. Kim, S. Kim, “Growth kinetics ofGaN and effects of flux ratio on the properties of GaN films grown by plasma-assistedmolecular beam epitaxy,” Journal of Vacuum Science & Technology A: Vacuum,Surfaces, and Films, 17(5), 3019-3028.
[28] M. D. Szata, “Analysis of RHEED pattern from semiconductor surfaces,” Materials chemistry and physics, 81(2), 257-259.
[29] Retrieved March 13th, 2017, from URL:http://www.reocities.com/CapeCanaveral/5702/Fe_Si.html
[30] S. Andrieu, P. Fréchard, “What information can be obtained by RHEED
applied on polycrystalline films,” Surface science, 360(1-3), 289-296.
[31] Retrieved March 13th, 2017, from URL:
http://www.ou.edu/research/electron/bmz5364/resolutn.html
[32] 羅聖全(2013),科學基礎研究之重要利器_掃描式電子顯微鏡,科學研習|
2013 年5 月,No. 52-5
[33] Retrieved July 11th, 2017, from URL:
http://www.wunan.com.tw/www2/download/preview/5E57.PDF
[34] Retrieved July 11th, 2017, from URL:
http://www.mdu.edu.tw/~yinyu/contributions/SEM-EDS%20readouts.pdf
[35] Retrieved March 13th, 2017, from URL:
https://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90
%E6%98%BE%E5%BE%AE%E9%95%9C
[36] Retrieved March 13th, 2017, from URL:
http://www.coretechint.com/technical_info-xps.php?lang=2
[37] Retrieved March 13th, 2017, from URL:
http://www.academia.edu/16183346/MLE2101_Lab_Report
[38] Retrieved July 11th, 2017, from URL:
http://www.lcis.com.tw/paper_store/paper_store/CH3-2015517201832562.pdf
[39] Retrieved March 13th, 2017, from URL:http://www.tnu.edu.tw/ee/upimages/file/Std-97/1004/%E5%B0%88%E9%A1%8C%E4%BB%8B%E7%B4%B9/A_3.htm
[40] 李其紘(2013),原子力顯微鏡的基本介紹,科學研習| 2013 年5 月,No.
52-5
[41] Retrieved March 13th, 2017, from URL:
https://amyhallr.wordpress.com/2013/03/15/atomic-force-microscopy/
[42] Retrieved March 13th, 2017, from URL:http://web1.knvs.tp.edu.tw/AFM/ch4.htm
[43] Retrieved July 11th, 2017, from URL:
https://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9
C%E5%AD%B8
[44] Retrieved July 11th, 2017, from URL:
http://labguide.com.tw/user/w016267551/uploads/1246937317.pdf
[45] Retrieved July 11th, 2017, from URL:
http://www.teo.com.tw/brand.asp?lv=0&id=70
[46] Retrieved July 11th, 2017, from URL:
http://www.ym.edu.tw/biophotonics-ultrasound-lab/research/yensen_2.htm
[47] Yi Wan, Jun Xiao, Jingzhen Li, Xin Fang, Kun Zhang, Lei Fu, Pan Li, Zhigang Song, Hui Zhang, Yilun Wang, Mervin Zhao, Jing Lu, Ning Tang, Guangzhao Ran, Xiang Zhang, Yu Ye,* and Lun Dai*, ” Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity”, Adv. Mater. 2018, 30, 1703888.
[48] Y. T. Ho , C. H. Ma , T. T. Luong , L. L Wei1, T. C. Yen, W. T. Hsu, W. H. Chang,
Y. C. Chu, Y. Y. Tu , Krishna Prasad Pande4 , and Edward Yi Chang, “Layered MoS2 grown on c-sapphire by pulsed laser deposition”, Phys. Status Solidi RRL 9, No. 3, 187–191 (2015).
[49] R Masihhur, L. M. Laskar, Santhakumar Kannappan, Pil Sung Park, Sriram Krishnamoorthy, N. Digbijoy, W. L. Nath, Yiying Wu, and Siddharth Rajan, “Large area single crystal (0001) oriented MoS2”, Appl. Phys. Lett. 102, 252108 (2013).
[50] W. Hayes, R. Loudon, Scattering of Light by Crystals (Wiley, New York, 1978).
[51] I. Gorczyca, N. E. Christensen, E. L. Peltzer, Y. Blanca, C.O. Rodriguezt,
“Optical phonon made in GaN and A1N,” Phys. Rev. B 51, 11936 (1995).
[52] Anwar Hushur1, Murli H. Manghnani, Jagdish Narayan, “Raman studies of GaN/sapphire thin film heterostructures,” Journal of Applied Physics 106, 054317 (2009).
[53] C. G. Van de Walle, J. Neugebauer, C. Stampel, M. D. McCluskey, and N.
M. Johnson, “ Acta Phys. Pol. A 96, 613 s1999d.
[54] A. Michael, Reshchikova, Hadis Morkoç, “Luminescence properties of defects in GaN”, Journal of Applied Physics 97, 061301 (2005).
[55] L. Q. Zhang, C. H. Zhang, C. L. Xu, H. Q. Zhang, Y. T. Yang, J. Y. Li, H. P. Liu, Z. N. Ding, T. X. Yan, “Damage produced on GaN surface by highly charged Krq+ irradiation”, NUCL SCI TECH (2017) 28:176.
[56] Mukesh Kumara, S. B. Ashish Kumara, S. Thapab, R. Christiansenb, Singha, “XPS study of triangular GaN nano/micro-needles grown by MOCVD technique,” Materials Science and Engineering B 186 (2014) 89–93.
[57] Priti Gupta, A. A. Rahman1, Shruti Subramanian, Shalini Gupta1, Arumugam Thamizhavel, Tatyana Orlova, Sergei Rouvimov, Suresh Vishwanath, Vladimir Protasenko, Masihhur R. Laskar, Huili Grace Xing, Debdeep Jena & Arnab Bhattacharya, “Layered transition metal dichalcogenides: promising nearlattice- matched substrates for GaN growth”, Scientific Reports | 6:23708 |
[58] Masihhur R. Laskar, Lu Ma, Santhakumar Kannappan, Pil Sung Park, Sriram Krishnamoorthy, Digbijoy N. Nath, Wu Lu, Yiying Wu, and Siddharth Rajan,, “Large area single crystal (0001) oriented MoS2”, Appl. Phys. Lett. 102, 252108 (2013).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *