帳號:guest(18.224.62.118)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳韋宏
作者(英文):Wei-Hong Chen
論文名稱:以水熱法改質二氧化鈦散射層與摻雜氧化石墨烯於電解液之染料敏化太陽能電池之特性研究
論文名稱(英文):Hydrothermal synthesis of titanium dioxide for the light scattering layer and Electrolyte doping with Graphene Oxide of dye-sensitized solar cells
指導教授:林育賢
指導教授(英文):Yu-Shyan Lin
口試委員:鄭岫盈
黃家華
口試委員(英文):Shiou-Ying Cheng
Chia-Hua Huang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610522023
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:103
關鍵詞:染料敏化太陽能電池散射層氧化石墨烯
關鍵詞(英文):Dye-sensitized solar cellScattering LayerGraphene Oxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
使用水熱法來合成二氧化鈦聚集體,合成出的奈米顆粒大小約 300 nm-1 μm,來達到高散射效果,由於此聚集體除了形貌類似繡球之外其顆粒大小也適合用於散射層,混入 P25 可以促進散射層與工作電極更加嵌合,使其效率提升。
  氧化石墨烯在電解液中可以降低電子再複合,以此提升染料敏化 太陽能電池電流大小進而提升效率,本研究將氧化石墨烯加入蒸餾水中後冷凍,冷凍過後做冷凍乾燥法,以冷凍乾燥來改質單層氧化石墨烯,使其多孔性增加,並添入液態電解液中,使其均勻存於電解液中,多空隙可以增進電流傳輸,以此來提升染料敏化太陽能電池的特性。
  In this study, by using hydrothermal method to synthesis titanium dioxide aggregation. The particle size was about 300 nanometer to 1 micrometer to achieve high scattering effect, and the morphology was similar with hydrangea. By mixing hydrangea TiO2 and P25-TiO2, makes more fitting with scattering electrode and the working electrode, so that efficiency can be improved.
  Graphene Oxide can reduce the recombination of electrons in the electrolyte, we used freeze-drying method to get porous graphene oxide, and added to electrolyte, so that pores make the electrolyte more filling, increasing current transfer as well, enhancing the efficiency to dye-sensitized solar cells.
致謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 太陽能電池發展歷史簡介 3
2.2 太陽能電池種類 4
2.2.1 矽基晶片型太陽能電池 5
2.2.2 矽薄膜型太陽能電池 5
2.2.3 化合物太陽能電池 5
2.2.4 有機太陽能電池 6
2.2.5 染料敏化太陽能電池 6
2.3 染料敏化太陽能電池之元件結構 7
2.3.1 透明導電極 7
2.3.2 工作電極 7
2.3.3 散射層 9
2.3.4 光敏化劑 11
2.3.5 電解質 13
2.3.6 對電極 15
2.4 染料敏化太陽能電池工作原理 16
2.5 水熱合成法(HYDROTHERMAL SYNTHESIS METHOD) 18
2.6 氧化石墨烯(GRAPHENE OXIDE) 19
2.7 冷凍真空乾燥法(FREEZE DRYING) 21
第三章 實驗設備與方法 23
3.1 實驗藥品 23
3.2 實驗儀器設備 26
3.2.1 熱壓封裝機(Thermo Compressor) 26
3.2.2 鑽孔機(Driller) 26
3.2.3 高溫爐管(High Temperature Tube Furnace) 26
3.2.4 鐵氟龍水熱釜(Teflon Autoclave) 26
3.2.5 烘箱(Oven) 26
3.2.6 網印版(Screen Printer) 26
3.2.7 超音波震盪機(Ultrasonic Cleaner) 27
3.2.8 磁石加熱攪拌器(Magnetic Stirrer) 27
3.2.9 超純水系統(Ultrapure Water Purification System) 27
3.2.10 冷凍乾燥機(Freeze Dryer) 27
3.3 測量儀器設備 28
3.3.1 太陽能電池I-V測量系統(Solar Cell I-V Measurements) 28
3.3.2 電化學阻抗頻譜(Electrochemical Impedance Spectroscopy, EIS) 30
3.3.3 強度調制光電流/光學壓頻譜模組分析(Intensity Modulated Photocurrent Spectroscopy and Intensity Modulated Photovoltage Spectroscopy, IMPS/IMVS) 31
3.3.4 X光繞射分析儀(X-Ray Diffraction, XRD) 32
3.3.5 場發射掃描電子顯微鏡(Field Emission of Scanning Electron Microscope, FE-SEM) 34
3.3.6 三維表面輪廓分析儀(3D-Surface Profiler) 36
3.3.7 紫外可見光光譜儀(UV-Visible Spectrophotometer) 36
3.3.8 拉曼光譜分析儀(Raman Spectrometer) 38
3.3.9 X射線光電子能譜儀(X-Ray Photoelectron Spectroscopy, XPS) 39
3.3.10 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer , FT-IR) 40
3.4 實驗流程 41
3.4.1 工作電極漿料製備 41
3.4.2 散射層漿料製備 42
3.4.3 四氯化鈦前處理製備 45
3.4.4 工作電極製備 46
3.4.5 四氯化鈦後處理製備 46
3.4.6 染料製備方式 47
3.4.7 對電極製備方式 47
3.4.8 電解液製備方法 48
3.4.9 封裝元件 50
第四章 結果與討論 51
4.1 散射層分析 51
4.1.1 散射層之XRD晶相分析 51
4.1.2 散射層之FE-SEM表面型態 53
4.1.3 單層工作電極及單層散射層之結果分析 57
4.1.4 不同層數工作電極搭配單層散射層之結果分析 60
4.1.5 五層工作電及搭配單層散射層之結果分析 63
4.1.6 散射層之反射量與散射量分析 65
4.2 電解液分析 69
4.2.1 氧化石墨烯FE-SEM表面型態 69
4.2.2 電解液有無氧化石墨烯結果分析 72
4.2.3 多孔隙氧化石墨烯比例對於電解液影響之結果分析 75
4.3 氧化石墨烯特性分析 79
4.3.1 氧化石墨烯拉曼分析 79
4.3.2 氧化石墨烯XPS分析 81
4.3.3 氧化石墨烯FT-IR分析 84
4.4 染料吸附特性分析 85
4.5 強度調制光電流與光電壓頻譜分析(IMPS/IMVS) 87
4.5.1 散射層對於IMPS/IMVS分析 87
4.5.2 氧化石墨烯添加對於IMPS/IMVS分析 88
4.6 電化學阻抗頻譜分析 89
第五章 結論 93
第六章 參考文獻 95
1. Chou, C.-S., et al., Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell. Applied Energy, 2012. 92: p. 224-233.
2. Hore, S., et al., Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006. 90(9): p. 1176-1188.
3. Tang, B.H., Hydrothermal synthesis of titanium dioxide nanocrystallite aggregates for the light scattering layer of dye-sensitized solar cells, master's thesis, Providence Universit department of applied chemistry, 2016.
4. Darlim, E.S., Graphene oxide as an additive in liquid and printable electrolyte for dye-sensitized solar cell applications, master's thesis, National Cheng Kung University department of Chemical Engineering, 2017.
5. Fan, J., S. Liu, and J. Yu, Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. Journal of Materials Chemistry, 2012. 22(33): p. 17027.
6. Xu, J.H., Study of graphene/TiO¬2 Photoanode in dye-sensitized solar cells,master's thesis, National Dong-Hwa University department of Materials Science and Engineering, 2017.
7. Liu, Y.L., Study of TiO2 scattering layer in dye-sensitized solar cell, master's thesis, National Dong-Hwa University department of Materials Science and Engineering, 2015.
8. Chang, W.-C., et al., Incorporating hydrangea-like titanium dioxide light scatterer with high dye-loading on the photoanode for dye-sensitized solar cells. Journal of Power Sources, 2016. 319: p. 131-138.
9. Zhang, X., M. Grätzel, and J. Hua, Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells. Frontiers of Optoelectronics, 2016. 9(1): p. 3-37.
10. Zhao, J., A.H. Wang, and M.A. Green, 24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates. Solar Energy Materials and Solar Cells, 2001. 66(1-4): p. 27-36.
11. Lin, C.-W., S.-C. Lee, and Y.-S. Lee, High-Efficiency Crystallization of Amorphous Silicon Films on Glass Substrate by New Metal-Mediated Mechanism. Japanese Journal of Applied Physics, 2005. 44(10): p. 7319-7326.
12. Wu, X., High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy, 2004. 77(6): p. 803-814.
13. Jensen, S.A., et al., Beneficial effect of post-deposition treatment in high-efficiency Cu(In,Ga)Se2 solar cells through reduced potential fluctuations. Journal of Applied Physics, 2016. 120(6): p. 063106.
14. Gunes, S., H. Neugebauer, and N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chemical Reviews, 2007. 107(4): p. 1324-1338.
15. Brian O'Regan, M.G., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353: p. 737–740.
16. Mathew, S., et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem, 2014. 6(3): p. 242-7.
17. Yoo, B., et al., Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells. Journal of Materials Chemistry, 2010. 20(21): p. 4392.
18. Albu, S.P., et al., TiO2 Nanotubes - Annealing Effects on Detailed Morphology and Structure. European Journal of Inorganic Chemistry, 2010. 2010(27): p. 4351-4356.
19. Liu, B. and E.S. Aydil, Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009. 131(11): p. 3985-3990.
20. Martinson, A.B.F., et al., ZnO nanotube based dye-sensitized solar cells. Nano Letters, 2007. 7(8): p. 2183-2187.
21. Jin, E.M., et al., Biotemplated hybrid TiO2 nanoparticle and TiO2–SiO2 composites for dye-sensitized solar cells. Materials Letters, 2014. 131: p. 190-193.
22. Weng, C.H., Solar cells, 2010.
23. Bai, Y., et al., Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev, 2014. 114(19): p. 10095-130.
24. Park, K., et al., Enhanced charge transport properties by strengthened necks between TiO2 aggregates for dye sensitized solar cells. Thin Solid Films, 2015. 588: p. 19-25.
25. Robson, K.C., et al., Design and development of functionalized cyclometalated ruthenium chromophores for light-harvesting applications. Inorg Chem, 2011. 50(12): p. 5494-508.
26. Liu, S.-H., et al., Theoretical Study of N749 Dyes Anchoring on the (TiO2)Surface in DSSCs and Their Electronic Absorption Properties. The Journal of Physical Chemistry C, 2012. 116(31): p. 16338-16345.
27. Kinoshita, T., et al., Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer. Nature Photonics, 2013. 7(7): p. 535-539.
28. Wu, J.H., et al., A Thermoplastic Gel Electrolyte for Stable Quasi-Solid-State Dye-Sensitized Solar Cells. Advanced Functional Materials, 2007. 17(15): p. 2645-2652.
29. Nguyen, H.T., H.M. Ta, and T. Lund, Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine. Solar Energy Materials and Solar Cells, 2007. 91(20): p. 1934-1942.
30. Kawano, R., et al., High performance dye-sensitized solar cells using ionic liquids as their electrolytes. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1-3): p. 87-92.
31. Kusama, H. and H. Arakawa, Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 160(3): p. 171-179.
32. Jeanbourquin, X.A., et al., Rediscovering a key interface in dye-sensitized solar cells: guanidinium and iodine competition for binding sites at the dye/electrolyte surface. J Am Chem Soc, 2014. 136(20): p. 7286-94.
33. Wang, Y., et al., Influence of 4-tert-butylpyridine/guanidinium thiocyanate co-additives on band edge shift and recombination of dye-sensitized solar cells: experimental and theoretical aspects. Electrochimica Acta, 2015. 185: p. 69-75.
34. Chen, D., H. Feng, and J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev, 2012. 112(11): p. 6027-53.
35. WILLIAMS . HUMMERSJR, R.O., Preparation of Graphitic Oxide. J. Am. Chem. Soc., 1958: p. 1339-1339.
36. Ikegami, M., et al., Improvement in durability of flexible plastic dye-sensitized solar cell modules. Solar Energy Materials and Solar Cells, 2009. 93(6-7): p. 836-839.
37. Espen Olsena, G.H., Sten Eric Lindquistc, Dissolution of platinum in methoxy propionitrile containing LiI/I2. Solar Energy Materials and Solar Cells, 2000. 63(3): p. 267-273.
38. Choi, H., et al., Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. Journal of Materials Chemistry, 2011. 21(21): p. 7548.
39. Wang, H. and Y.H. Hu, Graphene as a counter electrode material for dye-sensitized solar cells. Energy & Environmental Science, 2012. 5(8): p. 8182.
40. Vijayakumar, P., et al., A facile one-step synthesis and fabrication of hexagonal palladium-carbon nanocubes (H-Pd/C NCs) and their application as an efficient counter electrode for dye-sensitized solar cell (DSSC). Ceramics International, 2017. 43(11): p. 8466-8474.
41. Grätzel, M., Photoelectrochemical cells. Nature, 2001. 414: p. 338-344.
42. Ding, Z., G.Q. Lu, and P.F. Greenfield, Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. Journal of Physical Chemistry B, 2000. 104(19): p. 4815-4820.
43. Liu, B. and H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 2003. 125(15): p. 4430-4431.
44. Yeh, T.-F., et al., Roles of graphene oxide in photocatalytic water splitting. Materials Today, 2013. 16(3): p. 78-84.
45. Gun, J., et al., Graphene oxide organogel electrolyte for quasi solid dye sensitized solar cells. Electrochemistry Communications, 2012. 19: p. 108-110.
46. Neo, C.Y., N.K. Gopalan, and J. Ouyang, Graphene oxide/multi-walled carbon nanotube nanocomposites as the gelator of gel electrolytes for quasi-solid state dye-sensitized solar cells. Journal of Materials Chemistry A, 2014. 2(24): p. 9226.
47. Lin, B., et al., Poly(ionic liquid)/ionic liquid/graphene oxide composite quasi solid-state electrolytes for dye sensitized solar cells. RSC Advances, 2015. 5(70): p. 57216-57222.
48. Lin, B., et al., Ionic liquid-tethered Graphene Oxide/Ionic Liquid Electrolytes for Highly Efficient Dye Sensitized Solar Cells. Electrochimica Acta, 2014. 134: p. 209-214.
49. Dreyer, D.R., et al., The chemistry of graphene oxide. Chem Soc Rev, 2010. 39(1): p. 228-40.
50. Chabot, V., et al., A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy & Environmental Science, 2014. 7(5): p. 1564.
51. Min, S. and G. Lu, Dye-Sensitized Reduced Graphene Oxide Photocatalysts for Highly Efficient Visible-Light-Driven Water Reduction. The Journal of Physical Chemistry C, 2011. 115(28): p. 13938-13945.
52. Eigler, S. and A. Hirsch, Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angew Chem Int Ed Engl, 2014. 53(30): p. 7720-38.
53. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
54. Aschkenasy, H., Freeze-drying. Scientific American, 1996. 275(3): p. 184-184.
55. Abdelwahed, W., et al., Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev, 2006. 58(15): p. 1688-713.
56. Searles JA, C.J., Randolph TW., Annealing to Optimize the Primary Drying Rate, Reduce Freezing-Induced Drying Rate Heterogeneity, and Determine Tg0 in Pharmaceutical Lyophilization. J Pharm Sci., 2001: p. 872-87.
57. Oh, K.S., et al., Formation of core/shell nanoparticles with a lipid core and their application as a drug delivery system. Biomacromolecules, 2005. 6(2): p. 1062-1067.
58. Han, L., et al., Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus Chimie, 2006. 9(5-6): p. 645-651.
59. Lin, L.C., Application of X-Ray diffraction analysis of industrial materials, 1993.
60. Chen, K.P., Introduction and analysis for X-Ray, 2003.
61. J. C. Vickerman, Surface analysisthe principle techniques, New YorkJohn Wiley & Sons(1997).
62. Spence, P.W.H.a.J.C.H., Science of microscopy. 2008: Berlin Springer.
63.  Weng, C.H., Solar cells Chapter.10, Tunghua, 2010.
64. Wang, Z.-S., et al., Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004. 248(13-14): p. 1381-1389.
65. Herzberg, G., Infrared and raman spectra of polyatomic molecules. 1945: New YorkVan Nostrand Reinhold.
66. Ito, S., et al., Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 2007. 15(7): p. 603-612.
67. Kim, K., et al., Improvement of electron transport by low-temperature chemically assisted sintering in dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2009. 204(2-3): p. 144-147.
68. Choi, H., et al., The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Current Applied Physics, 2012. 12(3): p. 737-741.
69. Ngamsinlapasathian, S., et al., Dye-sensitized solar cell made of mesoporous titania by surfactant-assisted templating method. Solar Energy Materials and Solar Cells, 2006. 90(18-19): p. 3187-3192.
70. Lee, S.-W., et al., Effects of TiCl4 Treatment of Nanoporous TiO2 Films on Morphology, Light Harvesting, and Charge-Carrier Dynamics in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2012. 116(40): p. 21285-21290.
71. Huang, C.-Y., et al., The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2006. 90(15): p. 2391-2397.
72. Lee, K.-M., V. Suryanarayanan, and K.-C. Ho, Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells. Journal of Power Sources, 2009. 188(2): p. 635-641.
73. Tai, P.T., Cheng, H.C., Solar Technology Manual, Chapter.1, Published by Electronics Devices and Materials Association, 2012.
74. Xu, K., et al., The influence of different modified graphene on property of DSSCs. Applied Surface Science, 2016. 362: p. 477-482.
75. Lee, K.M., V. Suryanarayanan, and K.C. Ho, Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells. Journal of Power Sources, 2009. 188(2): p. 635-641.
76. Hsu, Y.W., Preparation and characterization of mixed-phase TiO2 Photoelectrode for dye-senesitized solar cells, master's thesis, National Taipei University of Technology department of Molecular Science and Engineering, 2009.
77. Han, L., et al., Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters, 2004. 84(13): p. 2433-2435.
78. Adachi, M., et al., Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. Journal of Physical Chemistry B, 2006. 110(28): p. 13872-13880.
79. Bisquert, J., Theory of the impedance of electron diffusion and recombination in a thin layer. Journal of Physical Chemistry B, 2002. 106(2): p. 325-333.

(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *