帳號:guest(3.17.80.70)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉懿儀
作者(英文):Yi-Yi Liu
論文名稱:氧化石墨複合光觸媒之製備與光催化反應研究
論文名稱(英文):Study of photocatalytic production and preparation on Graphite oxide Composite Photocatalyst
指導教授:林欣瑜
指導教授(英文):Hsin-yu Lin
口試委員:張文固
胡哲嘉
口試委員(英文):Wen-Ku Chang
Che-Chia Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610522025
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:92
關鍵詞:氧化石墨SrTiO3:RhZ-scheme光觸媒光催化水分解
關鍵詞(英文):graphite oxideSrTiO3:RhZ-schemephotocatalystphotocatalytic water splitting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
本研究使用Hummer’s法改良製備的氧化石墨(Graphite oxide)作為產氧觸媒,產氫觸媒使用摻雜Rh的SrTiO3(簡稱SrTiO3:Rh)以Ru奈米顆粒作為共觸媒。觸媒鑑定部分,以X光繞射光譜儀(XRD)、穿透式電子顯微鏡(TEM)、紫外-可見光光譜儀(UV-vis)、傅立葉轉換紅外光譜儀(FT-IR)、拉曼光譜儀(Raman)與X射線光電子能譜儀(XPS)來分析觸媒之物理、化學特性及表面性質,觸媒催化部分則利用氣相層析儀(GC)測試觸媒產氣活性。並使用產氫觸媒與產氧觸媒結合與[Co(Bpy)3]2+/3+作為氧化還原媒介探討兩步驟光催化全水分解反應(Z-scheme),將光觸媒於紫外光/可見光的照射下進行光催化水分解,產生氫氣與氧氣。
光催化水分解反應探討分為三個部分,第一部份為氧化石墨在[Co(Bpy)3]2+水溶液中進行產氧反應,其中以0.02克的Hummer’s法改良後氧化石墨(GOc)有最高產氧活性(O2: 3141.38μmole g-1 h-1);第二部份為Ru/SrTiO3:Rh在[Co(Bpy)3]2+水溶液中進行產氫反應,其中以0.05克有最高產氫活性(H2: 287.87μmole g-1 h-1);第三部分為將產氫觸媒Ru/SrTiO3:Rh和產氧觸媒GOc以不同比例結合使用於Z-scheme系統中,進行全水分解的產氣反應之研究,其中以0.05克氧化石墨和0.05克Ru/SrTiO3:Rh結合於[Co(Bpy)3]2+水溶液進行光催化全水分解反應有最高產氣活性(H2:505.26、O2:786.11 (μmole g-1 h-1))。
In this study, the graphite oxide(GO) prepared by improved Hummer's method was used as the O2 evolution photocatalyst, and the H2 evolution photocatalyst was Rh doped SrTiO3 (denoted as SrTiO3:Rh) with Ru nanoparticle as cocatalyst. All the catalysts were characterized by X-ray diffraction spectrometer (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-visible Spectrophotometer (UV-vis), Fourier transform infrared spectrometer (FT-IR), Raman spectrometer (Raman) and X-ray photoelectron spectroscopy (XPS) to analyze the physical, chemical and surface properties. The gas-evolution activity of photocatalyst is tested by gas chromatograph (GC). The Z-scheme is a two-photocatalyst system for photocatalytic overall water splitting. It is using H2 evolution catalyst combined with O2 evolution catalyst in [Co(Bpy)3]2+/3+ aqueous solution as redox mediator. The photocatalyst is photocatalyzed by ultraviolet light/visible light to generate H2 and O2.
The activity of the photocatalyst in water splitting reaction is discussed in three parts. First, compare the activity of different grams and preparation of graphite oxide in the oxidation reaction.The highest of photoactivity O2 evolution photocatalyst is 0.02 g of Goc (O2: 3141.38μmole g-1 h-1).The second section is the H2 evolution reaction of Ru/SrTiO3:Rh in [Co(Bpy)3]2+(aq), wherein 0.05g has the highest hydrogen production activity (H2: 287.87μmole g-1 h-1).Last, the combination of Ru/SrTiO3:Rh and graphite oxide in different ratio in the Z-scheme system for the study of the gas evolution reaction. The photocatalytic overall water evolution reaction of 0.05 g of GO and 0.05 g of Ru/SrTiO3:Rh combined with [Co(Bpy)3]2+(aq) has the highest activity (H2:505.26、O2:786.11
(μmole g-1 h-1)).
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XV
第一章 研究背景和文獻回顧 1
1.1 前言 1
1.2 研究目的 2
1.3 文獻回顧 3
1.3.1光催化水分解 3
1.3.2 Z-scheme系統 8
1.3.3 共觸媒影響 17
1.3.4 氧化石墨 21
1.3.5 氧化石墨的光催化性質 22
第二章 實驗方法與步驟 23
2.1 實驗藥品與耗材 23
2.2 實驗設備與儀器 24
2.3 光觸媒製備 25
2.3.1 Hummer’s法製備氧化石墨 25
2.3.2 改良後氧化石墨製備 26
2.3.3 微波水熱法製備多孔型STO:Rh 26
2.3.4 STO:Rh添加共觸媒Ru 27
2.3.5 [Co(Bpy)3]SO4製備 27
2.3.6 g-C3N4的製備 27
2.3.7 磷摻雜g-C3N4的製備 28
2.3.8 硫摻雜g-C3N4的製備 28
2.3.9 磷和硫共摻雜g-C3N4的製備 28
2.4 光觸媒性質分析 29
2.4.1 X-Ray繞射儀(X-Ray Diffraction, XRD) 29
2.4.2 紫外-可見光分析儀(UV-visible Spectrophotometer) 31
2.4.3 解析型穿透式電子顯微鏡(Transmission electron microscope,TEM) 32
2.4.4 拉曼光譜儀(Raman spectra) 33
2.4.5 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer , FT-IR) 35
2.4.6 X射線光電子能譜儀(X-Ray Photoelectron Spectroscopy, XPS) 36
2.4.7 氣相層析儀(Gas Chromatography, GC) 37
2.5 GC檢量線製作 39
2.5.1 氫氣檢量線 39
2.5.2 氧氣檢量線 40
2.6 光催化水分解產氣實驗 42
第三章 實驗結果與討論 43
3.1 產氧觸媒氧化石墨鑑定及水解半反應的影響 43
3.1.1 不同製備方法的氧化石墨之X-Ray繞射儀(XRD)分析 43
3.1.2 氧化石墨之解析型穿透式電子顯微鏡(TEM)分析 44
3.1.3 不同製備方法的氧化石墨進行光催化水解半反應 46
3.1.4 不同克數氧化石墨進行光催化水解半反應 48
3.1.5 半反應前後氧化石墨之拉曼光譜儀(Raman)分析 51
3.1.6 半反應前後GOc之傅立葉轉換紅外線光譜儀(FT-IR)分析 52
3.1.7 半反應前後氧化石墨之X射線光電子能譜儀(XPS)分析 53
3.2 產氫觸媒Ru/STO:Rh鑑定及水解半反應的影響 56
3.2.1 X-Ray繞射儀(XRD)分析 56
3.2.2 紫外-可見光(UV-visible)分析 57
3.2.3 解析型穿透式電子顯微鏡(TEM)分析 59
3.2.4 不同克數Ru/STO:Rh進行光催化水解半反應 60
3.2.5 半反應前後Ru/STO:Rh之X射線光電子能譜儀(XPS)分析 62
3.3 Ru/STO:Rh與氧化石墨GOc應用於Z-scheme系統 64
3.3.1 反應溶液對於光催化全水分解效果影響 64
3.3.2 不同克數GOc與Ru/STO:Rh之光催化全水分解效果影響 68
3.4 磷和硫共摻雜的g-C3N4作為一種有效的無金屬光觸媒 69
3.4.1 磷和硫摻雜g-C3N4之X-Ray繞射儀(XRD)分析 69
3.4.2 磷和硫摻雜g-C3N4進行光催化水解反應 70
3.4.3 磷和硫摻雜g-C3N4進行Z-scheme系統光催化全水解反應 72
第四章 結論 77
參考文獻 79

[1] Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37-38.
[2] Shangguan, W. (2007). Hydrogen evolution from water splitting on nanocomposite photocatalysts. Science and technology of advanced materials, 8(1-2), 76-81.
[3] Takata, T., Hitoki, G., Kondo, J. N., Hara, M., Kobayashi, H., & Domen, K. (2007). Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Research on Chemical Intermediates, 33(1-2), 13-25.
[4] Maeda, K., Terashima, H., Kase, K., Higashi, M., Tabata, M., & Domen, K. (2008). Surface modification of TaON with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light. Bulletin of the Chemical Society of Japan, 81(8), 927-937.
[5] Maeda, K., Terashima, H., Kase, K., & Domen, K. (2009). Nanoparticulate precursor route to fine particles of TaON and ZrO2–TaON solid solution and their photocatalytic activity for hydrogen evolution under visible light. Applied Catalysis A: General, 357(2), 206-212.
[6] Abe, R., Higashi, M., & Domen, K. (2010). Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. Journal of the American Chemical Society, 132(34), 11828-11829.
[7] Higashi, M., Domen, K., & Abe, R. (2011). Fabrication of efficient TaON and Ta3 N5 photoanodes for water splitting under visible light irradiation. Energy & Environmental Science, 4(10), 4138-4147.
[8] Gasperin, M., & Le Bihan, M. T. (1982). Mecanisme d'hydratation des niobates alcalins lamellaires de formule A4Nb4O17 (A= K, Rb, Cs). Journal of solid state chemistry, 43(3), 346-353.
[9] Ikeda, S., Tanaka, A., Shinohara, K., Hara, M., Kondo, J. N., Maruya, K. I., & Domen, K. (1997). Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17. Microporous materials, 9(5-6), 253-258.
[10] Chung, K. H., & Park, D. C. (1998). Photocatalytic decomposition of water over cesium-loaded potassium niobate photocatalysts. Journal of Molecular Catalysis A: Chemical, 129(1), 53-59.
[11] Sayama, K., Yase, K., Arakawa, H., Asakura, K., Tanaka, A., Domen, K., & Onishi, T. (1998). Photocatalytic activity and reaction mechanism of Pt-intercalated K4Nb6O17 catalyst on the water splitting in carbonate salt aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 114(2), 125-135.
[12] Miyamoto, N., & Nakato, T. (2002). Liquid crystalline nature of K4Nb6O17 nanosheet sols and their macroscopic alignment. Advanced Materials, 14(18), 1267-1270.
[13] Miyamoto, N., Yamamoto, H., Kaito, R., & Kuroda, K. (2002). Formation of extraordinarily large nanosheets from K4Nb6O17 crystals. Chemical communications, (20), 2378-2379.
[14] Liu, J. F., Li, X. L., & Li, Y. D. (2003). Synthesis and characterization of nanocrystalline niobates. Journal of crystal growth, 247(3-4), 419-424.
[15] Bizeto, M. A., & Constantino, V. R. (2004). Structural aspects and thermal behavior of the proton-exchanged layered niobate K4Nb6O17. Materials research bulletin, 39(11), 1729-1736.
[16] Jung, Y. H., Shim, H. K., Kim, H. W., & Kim, Y. I. (2007). Photochemical Hydrogen Evolution in K4Nb6O17 Semiconductor Particles Sensitized by Phosphonated Trisbipyridine Ruthenium Complexes. Bulletin of the Korean Chemical Society, 28(6), 921-928.
[17] Matsuoka, M., Kitano, M., Takeuchi, M., Tsujimaru, K., Anpo, M., & Thomas, J. M. (2007). Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production. Catalysis Today, 122(1-2), 51-61.
[18] Qu, W., Chen, F., Zhao, B., & Zhang, J. (2010). Preparation and visible light photocatalytic performance of methylene blue intercalated K4Nb6O17. Journal of Physics and Chemistry of Solids, 71(1), 35-41.
[19] Seabold, J. A., & Choi, K. S. (2012). Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. Journal of the American Chemical Society, 134(4), 2186-2192.
[20] Iwashina, K., & Kudo, A. (2011). Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. Journal of the American Chemical Society, 133(34), 13272-13275.
[21] Ouyang, S., Tong, H., Umezawa, N., Cao, J., Li, P., Bi, Y., ... & Ye, J. (2012).Surface-alkalinization-induced enhancement of photocatalytic H2 evolution over SrTiO3-based photocatalysts. Journal of the American Chemical Society, 134(4), 1974-1977.
[22] Bandara, J., Udawatta, C. P. K., & Rajapakse, C. S. K. (2005). Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochemical & Photobiological Sciences, 4(11), 857-861.
[23] Choi, H. J., & Kang, M. (2007). Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. International Journal of Hydrogen Energy, 32(16), 3841-3848.
[24] Jeon, M. K., Park, J. W., & Kang, M. (2007). Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase and rutile forms of Cu-TiO2. Journal of Industrial and Engineering Chemistry, 13(1), 84-91.
[25] Yoong, L. S., Chong, F. K., & Dutta, B. K. (2009). Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy, 34(10), 1652-1661.
[26] Nishijima, K., Kamai, T., Murakami, N., Tsubota, T., & Ohno, T. (2008). Photocatalytic hydrogen or oxygen evolution from water over S-or N-doped TiO2 under visible light. International Journal of Photoenergy, 2008.
[27] Zhu, H., Yang, B., Xu, J., Fu, Z., Wen, M., Guo, T., Fu, S., Zuo, J., & Zhang, S. (2009). Construction of Z-scheme type CdS–Au–TiO2 hollow nanorod arrays with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 90(3-4), 463-469.
[28] Kudo, A. (2006). Development of photocatalyst materials for water splitting. International Journal of Hydrogen Energy, 31(2), 197-202.
[29] Kiss, B., Manning, T. D., Hesp, D., Didier, C., Taylor, A., Pickup, D. M., Chadwick, V. A., Allison, H. E., Dhanak, V. R., Claridge, J. B., Rosseinsky, M. J., & Darwent, J. R. (2017). Nano-structured rhodium doped SrTiO3–Visible light activated photocatalyst for water decontamination. Applied Catalysis B: Environmental, 206, 547-555.
[30] Kato, H., Sasaki, Y., Shirakura, N., & Kudo, A. (2013). Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. Journal of Materials Chemistry A, 1(39), 12327-12333.
[31] Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature nanotechnology, 4(4), 217.
[32] Sayama, K., Yoshida, R., Kusama, H., Okabe, K., Abe, Y., & Arakawa, H. (1997). Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chemical Physics Letters, 277(4), 387-391.
[33] Maeda, K., & Domen, K. (2007). New non-oxide photocatalysts designed for overall water splitting under visible light. The Journal of Physical Chemistry C, 111(22), 7851-7861.
[34] Kudo, A. (2007). Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. International journal of hydrogen energy, 32(14), 2673-2678.
[35] Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338.
[36] Domen, K., Kudo, A., Shibata, M., Tanaka, A., Maruya, K. I., & Onishi, T. (1986). Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure. Journal of the Chemical Society, Chemical Communications, (23), 1706-1707.
[37] Ikeda, S., Tanaka, A., Shinohara, K., Hara, M., Kondo, J. N., Maruya, K. I., & Domen, K. (1997). Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17. Microporous materials, 9(5-6), 253-258.
[38] Chung, K. H., & Park, D. C. (1998). Photocatalytic decomposition of water over cesium-loaded potassium niobate photocatalysts. Journal of Molecular Catalysis A: Chemical, 129(1), 53-59.
[39] Sayama, K., Mukasa, K., Abe, R., Abe, Y., & Arakawa, H. (2002). A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. Journal of Photochemistry and Photobiology A: Chemistry, 148(1-3), 71-77.
[40] Yamasita, D., Takata, T., Hara, M., Kondo, J. N., & Domen, K. (2004). Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics, 172(1-4), 591-595.
[41] Abe, R., Sayama, K., & Sugihara, H. (2005). Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I. The journal of physical chemistry B, 109(33), 16052-16061.
[42] Sasaki, Y., Iwase, A., Kato, H., & Kudo, A. (2008). The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. Journal of Catalysis, 259(1), 133-137.
[43] Sasaki, Y., Nemoto, H., Saito, K., & Kudo, A. (2009). Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. The Journal of Physical Chemistry C, 113(40), 17536-17542.
[44] Maeda, K., Higashi, M., Lu, D., Abe, R., & Domen, K. (2010). Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. Journal of the American Chemical Society, 132(16), 5858-5868.
[45] Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A., & Amal, R. (2011). Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. Journal of the American Chemical Society, 133(29), 11054-11057.
[46] Martin, D. J., Reardon, P. J. T., Moniz, S. J., & Tang, J. (2014). Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. Journal of the American Chemical Society, 136(36), 12568-12571.
[47] Suzuki, T. M., Iwase, A., Tanaka, H., Sato, S., Kudo, A., & Morikawa, T. (2015). Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated by reduced graphene oxide. Journal of Materials Chemistry A, 3(25), 13283-13290.
[48] Iwase, A., Yoshino, S., Takayama, T., Ng, Y. H., Amal, R., & Kudo, A. (2016). Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator. Journal of the American Chemical Society, 138(32), 10260-10264.
[49] Tsuji, K., Tomita, O., Higashi, M., & Abe, R. (2016). Manganese‐Substituted Polyoxometalate as an Effective Shuttle Redox Mediator in Z‐Scheme Water Splitting under Visible Light. ChemSusChem, 9(16), 2201-2208.
[50] Nakada, A., Nishioka, S., Vequizo, J. J. M., Muraoka, K., Kanazawa, T., Yamakata, A., Nozawa, S., Kumagai, H., Adachi, S. I., Ishitani, O. & Maeda, K. (2017). Solar-driven Z-scheme water splitting using tantalum/nitrogen co-doped rutile titania nanorod as an oxygen evolution photocatalyst. Journal of Materials Chemistry A, 5(23), 11710-11719.
[51] Tomita, O., Nitta, S., Matsuta, Y., Hosokawa, S., Higashi, M., & Abe, R. (2016). Improved Photocatalytic Water Oxidation with Fe3+/Fe2+ Redox on Rectangular-shaped WO3 Particles with Specifically Exposed Crystal Faces via Hydrothermal Synthesis. Chemistry Letters, 46(2), 221-224.
[52] Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y., & Domen, K. (2006). Characterization of Rh−Cr Mixed-Oxide Nanoparticles Dispersed on (Ga1-xZnx)(N1-xOx) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting. The Journal of Physical Chemistry B, 110(28), 13753-13758.
[53] Lee, Y., Teramura, K., Hara, M., & Domen, K. (2007). Modification of (Zn1+xGe)(N2Ox) Solid Solution as a Visible Light Driven Photocatalyst for Overall Water Splitting. Chemistry of materials, 19(8), 2120-2127.
[54] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., ... & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565.
[55] Ke, D., Peng, T., Ma, L., Cai, P., & Dai, K. (2009). Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorganic Chemistry, 48(11), 4685-4691.
[56] Dickinson, A., James, D., Perkins, N., Cassidy, T., & Bowker, M. (1999). The photocatalytic reforming of methanol. Journal of Molecular Catalysis A: Chemical, 146(1-2), 211-221.
[57] Matsuoka, M., Kitano, M., Takeuchi, M., Tsujimaru, K., Anpo, M., & Thomas, J. M. (2007). Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production. Catalysis Today, 122(1-2), 51-61.
[58] Cheng, P., Yang, Z., Wang, H., Cheng, W., Chen, M., Shangguan, W., & Ding, G. (2012). TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. International journal of hydrogen energy, 37(3), 2224-2230.
[59] Lee, J., Shim, H. S., Lee, M., Song, J. K., & Lee, D. (2011). Size-controlled electron transfer and photocatalytic activity of ZnO–Au nanoparticle composites. The Journal of Physical Chemistry Letters, 2(22), 2840-2845.
[60] Rayalu, S. S., Jose, D., Joshi, M. V., Mangrulkar, P. A., Shrestha, K., & Klabunde, K. (2013). Photocatalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: enhancement in photocatalytic activity due to SPR effect. Applied Catalysis B: Environmental, 142, 684-693.
[61] Tanabe, I., Ryoki, T., & Ozaki, Y. (2015). The effects of Au nanoparticle size (5–60 nm) and shape (sphere, rod, cube) over electronic states and photocatalytic activities of TiO2 studied by far-and deep-ultraviolet spectroscopy. RSC Advances, 5(18), 13648-13652.
[62] Lomeda, J. R., Doyle, C. D., Kosynkin, D. V., Hwang, W. F., & Tour, J. M. (2008). Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of the American Chemical Society, 130(48), 16201-16206.
[63] Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286.
[64] Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., & Yao, J. (2008). Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C, 112(22), 8192-8195.
[65] Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., Jin, M. H., Jeong, H.-K., Kim, J. M., Choi, J.-Y., & Lee, Y. H. (2009). Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 19(12), 1987-1992.
[66] Si, Y., & Samulski, E. T. (2008). Synthesis of water soluble graphene. Nano letters, 8(6), 1679-1682.
[67] Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud'homme, R. K., Car, R., Saville, D. A., & Aksay, I. A., (2006). Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B, 110(17), 8535-8539.
[68] McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Herrera-Alonso, M., Milius, D. L., Car, R., Prud'homme, R. K., & Aksay, I. A., (2007). Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of materials, 19(18), 4396-4404.
[69] Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS nano, 2(7), 1487-1491.
[70] Zhu, Y., Murali, S., Stoller, M. D., Velamakanni, A., Piner, R. D., & Ruoff, R. S. (2010). Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 48(7), 2118-2122.
[71] Akikusa, J., & Khan, S. U. (1997). Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell. International journal of hydrogen energy, 22(9), 875-882.
[72] Kalyani, V., Vasile, B. S., Ianculescu, A., Testino, A., Carino, A., Buscaglia, M. T., Buscaglia, V.,& Nanni, P. (2015). Hydrothermal synthesis of SrTiO3: Role of interfaces. Crystal Growth & Design, 15(12), 5712-5725.
[73] Sasaki, Y., Kato, H., & Kudo, A. (2013). [Co (bpy)3]3+/2+ and [Co (phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. Journal of the American Chemical Society, 135(14), 5441-5449.
[74] Yeh, T. F., Syu, J. M., Cheng, C., Chang, T. H., & Teng, H. (2010). Graphite oxide as a photocatalyst for hydrogen production from water. Advanced Functional Materials, 20(14), 2255-2262.
[75] Tsai, K. A., & Hsu, Y. J. (2015). Graphene quantum dots mediated charge transfer of CdSe nanocrystals for enhancing photoelectrochemical hydrogen production. Applied Catalysis B: Environmental, 164, 271-278.
[76] Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W.& Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
[77] Li, Y., Tang, L., & Li, J. (2009). Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochemistry Communications, 11(4), 846-849.
[78] Chen, I. W. P., Huang, C. Y., Saint Jhou, S. H., & Zhang, Y. W. (2014). Exfoliation and performance properties of non-oxidized graphene in water. Scientific reports, 4, 3928.
[79] Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W.& Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
[80] Chen, J., Li, Y., Huang, L., Li, C., & Shi, G. (2015). High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon, 81, 826-834.
[81] Kiss, B., Manning, T. D., Hesp, D., Didier, C., Taylor, A., Pickup, D. M., Chadwick, A. V., Allison, H. E., Dhanak, V. R., Claridge, J. B., Darwent, J. R., Rosseinsky, M. J. & Darwent, J. R. (2017). Nano-structured rhodium doped SrTiO3–Visible light activated photocatalyst for water decontamination. Applied Catalysis B: Environmental, 206, 547-555.
[82] Pollini, I. (1994). Photoemission study of the electronic structure of CrCl3 and RuCl3 compounds. Physical Review B, 50(4), 2095.
[83] Yue, X., Zhang, J., Yan, F., Wang, X., & Huang, F. (2014). A situ hydrothermal synthesis of SrTiO3/TiO2 heterostructure nanosheets with exposed (0 0 1) facets for enhancing photocatalytic degradation activity. Applied Surface Science, 319, 68-74.
[84] Pan, D., Zhang, J., Li, Z., & Wu, M. (2010). Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots. Advanced materials, 22(6), 734-738.
[85] Hu, C., Hung, W. Z., Wang, M. S., & Lu, P. J. (2018). Phosphorus and sulfur codoped g-C3N4 as an efficient metal-free photocatalyst. Carbon, 127, 374-383.
[86] Dozzi, M. V., Brocato, S., Marra, G., Tozzola, G., Meda, L., & Selli, E. (2017). Aqueous ammonia abatement on Pt-and Ru-modified TiO2: Selectivity effects of the metal nanoparticles deposition method. Catalysis Today, 287, 148-154.
[87] Gaikwad, A. P., Tyagi, D., Betty, C. A., & Sasikala, R. (2016). Photocatalytic and photo electrochemical properties of cadmium zinc sulfide solid solution in the presence of Pt and RuS2 dual co-catalysts. Applied Catalysis A: General, 517, 91-99.
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *