帳號:guest(18.219.41.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Ashish Ghimire
作者(英文):Ashish Ghimire
論文名稱:濺鍍製備ZrB2/TiB2多層膜
論文名稱(英文):Hard yet tough ZrB2/TiB2 multilayer coatings prepared by magnetron sputtering
指導教授:翁明壽
指導教授(英文):Ming-Show Wong
口試委員:陳怡嘉
楊天賜
口試委員(英文):Yi-Jia Chen
T.S. Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610522027
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:103
關鍵詞(英文):Magnetron sputteringsuper hard coatingtoughnessmultilayer coatingtitanium diboridezirconium diboride
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏收藏:0
This study was carried out in 3 series experiments. In the first series, thick 4-layered ZrB2/TiB2 multilayer was deposited on Si substrate by sputtering TiB2 and ZrB2 ceramic targets in different bias so as to choose a suitable bias voltage for rest of the experiments. Results from this series experiment showed at -90 V substrate bias, both TiB2 and ZrB2 layers gained preferred orientation with highly crystalline diffraction peaks. Ion bombardment as a result of -90 volt substrate bias induced appropriate amount of defects and increased the compressive stress of the film which resulted in hardness enhancement and shorter crack length upon indentation fracture.

In the second series, using the -90V substrate bias as seen best from 1st series, multilayers of ZrB2/TiB2 with bilayer thickness varying from 200 nm to 25 nm were synthesized. Results from this series experiment showed hardness increment, as the bilayer thickness decreased the crystallinity of individual layers decreased due to insufficient crystal growth time in thinner layers. The hardness increased from 31 GPa to 36.6 GPa as the bilayer thickness varied from 200 nm to 25 nm. All the films showed enhanced toughness when compared to similar thickness single layer TiB2 or ZrB2. As long as the films were crystalline, increase in number of bilayers caused increase in residual stress most probably due to interface induced stress. Cross sectional FESEM images reveals clear intact layers. However, by this deposition technique, bilayer thickness lower than 25 nm was not possible to synthesize.

Finally, third series refers to deposition of ZrB2/TiB2 multilayers with bilayer thickness varying from 19 nm to 1 nm. Films with bilayer thickness 19 nm to 7 nm were very less crystalline or amorphous. However, for samples with bilayer thickness 4 nm to 2 nm, the crystallinity enhanced with the peaks lying between TiB2 001 and ZrB2 001. These samples also possess additional unique peaks at angles lower than ZrB2 001 peak. The diffraction peak of sample at 1 nm bilayer thickness corresponds to ZrB2 001. Samples from this series were the toughest with the highest Kc value of 2.6 MPa m½ for 2 nm bilayer sample. The maximum hardness reached upto 44 GPa for this same sample which was harder than single layer ZrB2 or TiB2.
Table of Contents
Acknowledgement i
Summary iii
Abstract vii
1.Preface 1
1.1Foreword 1
1.2 Research motivation 2
2. Introduction and Literature Review 3
2.1 Properties and preparation of TiB2 and ZrB2 3
2.2 TiB2 literature review 6
2.3 Limitations of hard ceramic diboride coatings 8
2.4 Multilayer coatings 9
(a) Coatings with a limited number of single layers 9
(b) Coatings with a high number of non isostructural single layers 9
(c) Superlattice coatings 9
i. Single crystal Superlattice coatings 10
ii. Polycrystal superlattice coatings with Superlattice hardening 10
iii. Polycrystal superlattice coatings without Superlattice hardening 11
2.5 Multilayer thin film strengthening mechanism 13
2.5.1 Interface hardening 13
2.5.2 Interface toughening 13
2.5.3 Fine Grain Hardening Hall-Petch Mode 15
2.6 TiB2 and ZrB2 as a multilayer combination 16
3. Experimental method and Instruments 17
3.1 Sputtering system 17
3.2 Preparation of sample 20
3.2.1 Substrate used 20
3.2.3 Substrate preparation 21
3.3 Experimental process planning 22
3.2 Thin film analysis 24
3.2.1 X-Ray Diffraction (XRD) 24
3.2.3 Three-dimensional surface profiler 26
3.2.4 Field emission scanning electron microscope (FESEM) 28
3.2.5 Nanoindentor 29
3.2.6 Toughness measurement by Vickers indentation fracture 30
4. Results and Discussion 31
4.1 4-layered ZrB2/TiB2 multilayer in different bias 31
4.1.1 Preparation of films in different bias 31
4.1.2 Thickness and crystal structure of the films in different bias 33
4.1.3 Composition and Morphology of the films in different bias 35
4.1.4 Hardness, Elastic modulus and Residual stress of ZrB2/TiB2 multilayer 38
4.1.5 Toughness measurement by Vickers Indentation 44
4.1.6 Discussion 46
4.2 ZrB2/TiB2 multilayer with different bilayer thicknesses (200 nm-25 nm) 49
4.2.1 Preparation of films 49
4.2.2 Crystal structure of the films in different bilayer thickness 51
4.2.3 Hardness, Elastic modulus and Residual stress of ZrB2/TiB2 multilayers 56
4.2.4 Composition and Morphology of the films of ZrB2/TiB2 multilayer 61
4.2.5 Toughness measurement by Vickers Indentation 64
4.2.6 Discussion 64
4.3 ZrB2/TiB2 multilayer with bilayer thickness ranging 19 nm-3 nm 67
4.3.1 Preparation of films 67
4.3.2 Crystal structure of the films in different bilayer thickness 69
4.3.3 Hardness, Elastic Modulus and Residual stress of ZrB2/TiB2 multilayer 74
4.3.4 Composition and Morphology of the films of ZrB2/TiB2 multilayer 81
4.3.5 Toughness measurement by Vickers Indentation 85
4.3.6 Discussion 85
5. Conclusion 93
6. References 97

[1] 蕭國益 and 翁明壽, "硬及超硬膜技術的現在與未來," 工業材料, vol. 143, pp. 74-89, 1998.
[2] C. Mitterer, "Borides in thin film technology," Journal of solid state chemistry, vol. 133, pp. 279-291, 1997.
[3] H. Holleck, "Material selection for hard coatings," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 4, pp. 2661-2669, 1986.
[4] W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee, and Y. Zhou, Ultra-high temperature ceramics: materials for extreme environment applications: John Wiley & Sons, 2014.
[5] R. Telle, L. Sigl, and K. Takagi, "Boride‐Based Hard Materials," Handbook of ceramic hard materials, pp. 802-945, 2000.
[6] A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, and D. T. Ellerby, "High‐Strength Zirconium Diboride‐Based Ceramics," Journal of the American Ceramic Society, vol. 87, pp. 1170-1172, 2004.
[7] F. Monteverde, A. Bellosi, and L. Scatteia, "Processing and properties of ultrahigh temperature ceramics for space applications," Materials Science and Engineering: A, vol. 485, pp. 415-421, 2008.
[8] Y. Murata, "Cutting tool tips and ceramics containing hafnium nitride and zirconium diboride," ed: Google Patents, 1970.
[9] W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, "Refractory diborides of zirconium and hafnium," Journal of the American Ceramic Society, vol. 90, pp. 1347-1364, 2007.
[10] D. Van Wie, D. Drewry, D. King, and C. Hudson, "The hypersonic environment: required operating conditions and design challenges," Journal of Materials Science, vol. 39, pp. 5915-5924, 2004.
[11] T. Jackson, D. Eklund, and A. Fink, "High speed propulsion: Performance advantage of advanced materials," Journal of materials science, vol. 39, pp. 5905-5913, 2004.
[12] E.Bemporad, M.Sebastiani, M.H.Staia, E.PuchiCabrera, Tribological studies on PVD/HVOF duplex coatings on Ti6Al4V substrate, Volume 203, Issues 5–7, 25 December 2008, Pages 566-571
[13] Y. Watanabe, Y. B. Gao, J. Q. Guo, H. Sato, S. Miura, and H. Miura, "Heterogeneous Nucleation of Pure Magnesium on Al3Ti, TiC, TiB2, and AlB2 Particles," Japanese Journal of Applied Physics, vol. 52, p. 01AN04, 2013.
[14] N. L. Okamoto, M. Kusakari, K. Tanaka, H. Inui, and S. Otani, "Anisotropic elastic 114 constants and thermal expansivities in monocrystal CrB 2, TiB 2, and ZrB 2," Acta Materialia, vol. 58, pp. 76-84, 2010.
[15] M. Wong and Y. Lee, "Deposition and characterization of Ti–B–N monolithic and multilayer coatings," Surface and Coatings Technology, vol. 120, pp. 194- 199, 1999.
[16] D. Li, M. Tan, G. Liu, H. Liu, and X. Sun, "Preparation and characterization of ZrB2/AlN multilayers by N+ beam assisted deposition," Surface and Coatings Technology, vol. 205, pp. 3791-3797, 2011.
[17] D. L. McClane, Thermal properties of zirconium diboride–transition metal boride solid solutions: Missouri University of Science and Technology, 2014.
[18] E. Randich, "Chemical vapor deposited borides of the form (Ti, Zr) B2 and (Ta, Ti) B2," Thin Solid Films, vol. 63, pp. 309-313, 1979.
[19] C. Choi, G. Ruggles, A. Shah, G. Xing, C. Osburn, and J. Hunn, "Stability of TiB2 as a diffusion barrier on silicon," Journal of The Electrochemical Society, vol. 138, pp. 3062-3067, 1991
[20] X. Wang, P. Martin, and T. Kinder, "Characteristics of TiB2 films prepared by ion beam sputtering," Surface and Coatings Technology, vol. 78, pp. 37-41, 1996.
[21] M. Berger, M. Larsson, and S. Hogmark, "Evaluation of magnetron-sputtered TiB 2 intended for tribological applications," Surface and Coatings Technology, vol. 124, pp. 253-261, 2000.
[22] X. Cao, T. Shao, S. Wen, T. Qing, and F. Qi, "Structure and microtribological characteristics of laser-arc deposited TiB2 thin film," Science in China Series G: Physics Mechanics and Astronomy, vol. 47, pp. 120-126, 2004.
[23] F. Kunc, J. Musil, P. Mayrhofer, and C. Mitterer, "Low-stress superhard Ti B films prepared by magnetron sputtering," Surface and coatings Technology, vol. 174, pp. 744-753, 2003.
[24] M. Mikula, B. Grančič, V. Buršíková, A. Csuba, M. Držík, Š. Kavecký, et al., "Mechanical properties of superhard TiB 2 coatings prepared by DC magnetron sputtering," Vacuum, vol. 82, pp. 278-281, 2007.
[25] N. Kalfagiannis, G. Volonakis, L. Tsetseris, and S. Logothetidis, "Excess of boron in TiB2 superhard thin films: a combined experimental and ab initio study," Journal of Physics D: Applied Physics, vol. 44, p. 385402, 2011.
[26] F. Lofaj, T. Moskalewicz, G. Cempura, M. Mikula, J. Dusza, and A. Czyrska-Filemonowicz, "Nanohardness and tribological properties of nc-TiB 2 coatings,"Journal of the European Ceramic Society, vol. 33, pp. 2347-2353, 2013.
[27] N. Nedfors, A. Mockute, J. Palisaitis, P. O. Persson, L.-Å. Näslund, and J. Rosen, "Influence of pulse frequency and bias on microstructure and mechanical properties of TiB 2 coatings deposited by high power impulse magnetron115 sputtering," Surface and Coatings Technology, vol. 304, pp. 203-210, 2016.
[28] R. A. Andrievski, "Nanostructured titanium, zirconium and hafnium diborides: the synthesis, properties, size effects and stability," Russian Chemical Reviews, vol. 84, p. 540, 2015.
[29] M. Aviles, J. Cordoba, M. Sayagues, and F. Gotor, "Mechanochemical synthesis of Ti 1− x Zr x B 2 and Ti 1− x Hf x B 2 solid solutions," Ceramics International, vol. 37, pp. 1895-1904, 2011.
[30] R. Wood, "The lattice constants of high purity alpha titanium," Proceedings of the Physical Society, vol. 80, p. 783, 1962.
[31] J. Goldak, L. Lloyd, and C. Barrett, "Lattice parameters, thermal expansions, and Grüneisen coefficients of Zirconium, 4.2 to 1130 K," Physical Review, vol. 144, p. 478, 1966.
[32] R. Gilmore, M.A. Baker, P.N. Gibson, W. Gissler, Surface and Coatings Technology 105 (1998) 45–50
[33] R. Gilmore, M.A. Baker, P.N. Gibson, W. Gissler, Surface and Coatings Technology 116–119 (1999) 1127–1132
[34] H. Deng, J. Chen, R.B. Inturi, J.A. Barnard, Surface and Coatings Technology 76-77 (1995) 609-614
[35] C.M.T. Sanchez, H.D. Fonseca-Filho, M.E.H. Maia da Costa, F.L. Freire Jr., Thin Solid Films 517 (2009) 5683–5688
[36] C.M.T. Sanchez, B. Rebollo Plata, M.E.H. Maia da Costa, F.L. Freire Jr., Surface & Coatings Technology 205 (2011) 3698–3702
[37] K. Chu, Y.H. Lu, Y.G. Shen, Thin Solid Films 516 (2008) 5313–5317
[38] Nurot PANICH, Panyawat Wangyao, Supot Hannongbua, Prasonk Sricharoenchai , Yong SUN, Journal of Metals, Materials and Minerals. 45-50 (2006) 16(1)
[39] Nurot PANICH, Panyawat Wangyao, Nuntapol Vattanaprateep and Sun Yong, Journal of Metals, Materials and Minerals. 19-23 (2006) 16(2)
[40] A O Mateescu, G Mateescu, M Balasoiu, G O Pompilian, M Lungu, IOP Materials Science and Engineering 174 (2017) 012059
[41] J. Rao, R. Cruz, K.J. Lawson, J.R. Nicholls, Diamond & Related Materials 13 (2004) 2221–2225
[42] U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Markert, J.E. Greene, J. Appl. Phys. 62 1987. 481.
[43] H. Holleck, V. Schier Surface and Coatings Technology 76-77 (1995) 328-336
[44] M. Stueber∗, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, C. Ziebert Journal of Alloys and Compounds 483 (2009) 321–333
[45] U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Markert, J.E. Greene, J. Appl. Phys. 62 (2) (1987) 481–484.
[46] P.B. Mirkarimi, L. Hultman, S.A. Barnett, Appl. Phys. Lett. 57 (25) (1990) 2654–2656.
[47] M. Shinn, L. Hultman, S.A. Barnett, J. Mater. Res. 7 (4) (1992) 901–911.
[48] X. Chu, M.S.Wong,W.D. Sproul, S.L. Rohde, S.A. Barnett, J. Vac. Sci. Technol. A 10 (4) (1992) 1604–1609.
[49] X. Chu, S.A. Barnett, M.S. Wong, W.D. Sproul, Surf. Coat. Technol. 57 (1993) 13–18.
[50] G. Li, Z. Han, J. Tian, J. Xu, M. Gu, J. Vac. Sci. Technol. A 20 (3) (2002) 674– 677.C
[51] H.C. Barshilia, K.S. Rajam, Surf. Coat. Technol. 183 (2004) 174 183C
[52] P. Yashar, S.A. Barnett, J. Rechner, W.D. Sproul, J. Vac. Sci. Technol. A 16 (5) (1998) 2913–2918.C
[53] J. Xu, G. Li, M. Gu, Thin Solid Films 370 (2000) 45–49.
[54] M.X.Wang, J.J. Zhang, J. Yang, L.Q.Wang, D.J. Li, Surf. Coat. Technol. 201 (2007) 6800–6803
[55] J.S.Yoon, H.S. Myung, J.G. Han, J. Musil, Surf. Coat. Technol. 131 (2000) 372–377.
[56] H.Y. Lee, J.G. Han, S.H. Baeg, S.H. Yang, Thin Solid Films 420–421 (2002) 414–420
[57] K.W. Lee, Y.-H. Chen, Y.-W. Chung, L.M. Keer, Surf. Coat. Technol. 177–17 (2004) 591–596.
[58] J. Yang, M.X.Wang, Y.B. Kang, D.J. Li, Appl. Surf. Sci. 253 (2007) 5302–5305.
[59] D.J. Li, M.X.Wang, J.J. Zhang, Mater. Sci. Eng. A 423 (2006) 116–120L. Hultman, in: A. Cavaleiro, J.Th.M. De Hosson (Eds.), Nanostructured Coatings, Springer, New York, 2006, pp. 539–554.
[60] P.Eh. Hovsepian, D.B. Lewis,W.-D. Münz, A. Rouzaud, P. Juliet, Surf. Coat. Technol. 116–119 (1999) 727–734.
[61] D.B. Lewis, D. Reitz, C. Wüstefeld, R. Ohser-Wiedemann, H. Oettel, A.P. Ehiasarian, P.Eh. Hovsepian, Thin Solid Films 503 (2006) 133–142.
[62] C. Reinhard, A.P. Ehiasarian, P.Eh. Hovsepian, Thin Solid Films 515 (2007) 3685–3692.
[63] D.C. Cameron, R. Aimo, Z.H.Wang, K.A. Pischow, Surf. Coat. Technol. 142–144 (2001) 567–572.
[64] E. Bemporad, C. Pecchio, S. De Rossi, F. Carassiti, Surf. Coat. Technol. 188–189 (2004) 319–330.
[65] H. Ljungcrantz, C. Engström, L. Hultman, M. Olsson, X. Chu, M.S. Wong, W.D. Sproul, J. Vac. Sci. Technol. A 16 (5) (1998) 3104–3113.
[66] W.-H. Soe, R. Yamamoto, Mater. Chem. Phys. 50 (1997) 176–181.
[67] C.J. Tavares, L.Rebouta, M. Andritschky, S.Ramos, J.Mater. Proc. Technol. 92–93 (1999) 177–183.
[68] S. Ulrich, C. Ziebert, M. Stüber, E. Nold, H. Holleck, M. Göken, E. Schweitzer, P. Schlossmacher, Surf. Coat. Technol. 188–189 (2004) 331–337.
[69] A. Rizzo, M.A. Signore, M. Penza, M.A. Tagliente, F. De Riccardis, E. Serra, Thin Solid Films 515 (2006) 500–504.
[70] X.M. Xu, J. Wang, J. An, Y. Zhao, Q.Y. Zhang, Surf. Coat. Technol. 201 (2007) 5582–5586.
[71] H. Högberg, J. Birch,M. Oden, J.-O. Malm, L. Hultman, U. Jansson, J. Mater. Res. 16 (5) (2001) 1301–1310.
[72] U. Jansson, H. Högberg, J.-P. Palmqvist, L. Norin, J.O. Malm, L. Hultman, J. Birch,Surf. Coat. Technol. 142–144 (2001) 817–822.
[73] H. Holleck, V. Schier, Surf. Coat. Technol. 76–77 (1995) 328–336
[74] H. Holleck, in: A. Kumar, Y.-W. Chung, J.J. Moore, J.E. Smugeresky (Eds.), Surface Engineering: Science and Technology I, The Minerals, Metals & Materials Society,Warrendale, Pennsylvania, 1999, pp. 207–218.
[75] W. D. Callister, JR., Materials Science and Engineering: An Introduction, 5th ed., John Wiley & Sons, Inc., New York, (1999).
[76] B. Bhushan, "Chemical, mechanical and tribological characterization of ultrathin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments," Diamond and Related Materials, vol. 8, pp. 1985-2015, 1999.
[77] R. Saha and W. D. Nix, "Effects of the substrate on the determination of thin film mechanical properties by nanoindentation," Acta Materialia, vol. 50, pp. 23-38, 2002.
[78] B. Bhushan, Mechanics and reliability of flexible magnetic media: Springer Verlag, 2000.
[79] X. Li, D. Diao, and B. Bhushan, "Fracture mechanisms of thin amorphous carbon films in nanoindentation," Acta materialia, vol. 45, pp. 4453-4461, 1997.
[80] L.O. Affonso. Machinery Failure Analysis Handbook - Sustain Your Operations and Maximize Uptime. Gulf Publishing Company, USA, 2006
[81] D.L. Joslin, W.C Oliver. A new method for analysing data from continuous depth-sensing microindentation tests. Journal of Materials Research, 1990, 5, (1), 123-126.
[82] T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, R.L. White, S. Anders, A. Anders, I.G. Brown. Nanoindentation and nanoscratching of hard carbon coatings for magnetic discs. MRS Proceedings, 383-447
[83] J Buršík et al Characterization of Ta-B-C nanostructured hard Coatings, 2017 IOP Conf. Ser.: Mater. Sci. Eng. 175 012020
[84] Sam Zhang, Xiaomin Zhang, Toughness evaluation of hard coatings and thin films, Thin Solid Films 520 (2012) 2375–2389
[85] F. Cai, Xiao Huang, Q. Yang and Doug Nagy, Tribological Behaviours of Titanium Nitride and Chromium Nitride Based PVD Coating Systems, ASME Proceedings Manufacturing Materials and MetallurgyPaper No. GT2012-68107, pp. 41-49; 9 pages
[86] 許樹恩 and 吳泰伯, "X 光繞射原理與材料結構分析," 民全書局, 1996.
[87] Jungk, J. M., et al. Indentation fracture toughness and acoustic energy release in tetrahedral amorphous carbon diamondlike thin films. Acta Materialia, 2006, Vol. 54
[88] WeiminWang, et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics, Journal of the European Ceramic Society Volume 22, Issue 7, July 2002, Pages 1045-1049
[89] R.C. Garvie, R.H.J. Hannink, R.T. Pascoe Nature, 258 (1975), p. 703
[90] ChenWang, JieHan, Julio Mirand Pureza, Yip-WahChung, Structure and mechanical properties of Fe1−xMnx/TiB2 multilayer coatings: Possible role of transformation toughening, Surface and Coatings Technology, Volume 237, 25 December 2013, Pages 158-163
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *