帳號:guest(18.119.125.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳冠螢
作者(英文):Kuan-Ying Chen
論文名稱:應用於無線通訊系統之高增益低雜訊接收機前端電路設計
論文名稱(英文):Design of High Gain Low Noise Receiver Front-ends for Wireless Communication Systems
指導教授:翁若敏
指導教授(英文):Ro-Min Weng
口試委員:彭盛裕
蕭志龍
口試委員(英文):Sheng-Yj Peng
Zhi-Long Xiao
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610523005
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:66
關鍵詞:頻率調變連續波雷達無線網路高增益低雜訊射頻接收機積體電路
關鍵詞(英文):FMCW RadarWiFiHigh GainLow NoiseRF ReceiverIC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏收藏:0
在科技快速發展的時代,無線通訊的需求愈來愈大,也更廣為人們所使用,在無線通訊系統中收發機設計為一個重要的關鍵,它依託於電磁波來傳播,其中位於收發機前端的低雜訊放大器需將天線接收到的微弱訊號放大,供後級元件處理,混頻器也扮演著重要的角色,將放大的訊號進行升頻及降頻的轉換,而良好輸入與輸出匹配、高增益、低雜訊、高線性度、低功率消耗與面積小皆是接收機設計的考量,本篇論文研究接收機的設計與製作,以高增益、低雜訊和低功耗為主要設計目標,共提出兩個分別應用於無線個人區域網系統(Zigbee)與車載系統之衛星雷達(FMCW Radar)的電路設計,並且使用Advanced Design System (ADS)電路模擬軟體和台積電0.18μm 1P6M CMOS製程模擬與製作。
第一個為應用於Zigbee之高增益低雜訊的低雜訊放大器,輸入級使用共源極放大器架構,可以提高電壓增益並且抑制雜訊指數,並利用基底偏壓(Body-bias)技術,降低電晶體的操作電壓和臨界電壓,進而降低整體電路功耗,其模擬結果如下,操作頻帶為2.4GHz,增益為20dB,雜訊為2.5dB,IIP3為-21dBm,功率消耗為1.8mW,晶片面積為1.026*0.902 mm^2。
第二個為應用於車載安全系統之高增益低雜訊的天線接收機,整合了低雜訊放大器與混頻器,並改良傳統混頻器架構,RF端使用兩級共源極放大器串接作為輸入級和提高增益值,LO端採用電壓注入法和主動式負載改善線性度,其模擬結果如下,操作頻帶為24GHz,增益為22.2dB,雜訊為8.9dB,IIP3為-13dBm,核心功率消耗為0.96mW,電路總功率消耗為2.7mW,晶片面積為0.942*0.628 mm^2。
In the era of rapid technological development, the demand for wireless communication is growing faster and more used by people. The design of the system transceiver is an important key in the wireless communication. It relies on electromagnetic waves to spread. The low noise amplifier located in the front of the transceiver will amplify the weak signal from the antenna. The Mixer also plays an important role to transform signal . Having good input and output matching, high gain, low noise, high linearity, low power consumption and small area are the considerations of the receiver. This paper studies the design and production of receiver, and the main design goals are high gain, low noise and low power consumption. Two circuit are proposed to apply for Wireless Personal Area Network (ZigBee) and FMCW Radar respectively. Advanced Design System (ADS) is used as the simulation tool. The circuits are manufactured fabricated using tsmc 0.18μm 1P6M CMOS technology and taped out by National Chip Implementation Center (CIC).
The first circuit is a low noise amplifier with high gain and low noise applied for the ZigBee system. The input stage uses a common source amplifier to increase gain and suppress noise. Each body of transistor adds an external bias source, so that the operating voltage and threshold voltage can be reduced effectively. This technique can reduce the overall power consumption. The power gain is 20dB. The noise figure is 2.5dB. The linearity of input-referred third-order intercept point (IIP3) is -21dBm. The total power consumption of this circuit is 1.805mW. The total area of the circuit layout is 1.026*0.902〖 mm〗^2.
The second circuit is a receiver applied for the FMCW Radar system with high gain and low noise. It improves the traditional architecture and integrates the low noise amplifier and the mixer. It's based on the two-stage common-source cascade configuration to provide high gain for the transconductance stage. Using current-bleeding and active load to improve linearity for the switching stage. The power gain is 22.2dB. The noise figure is 8.9dB. The linearity of input-referred third-order intercept point (IIP3) is -13dBm. The core power consumption is 0.96mW. The total power consumption of this circuit is 2.7mW. The total area of the circuit layout is 0.942*0.628〖 mm〗^2.
誌謝 i
中文摘要 ii
Abstract iii
Table of Contents v
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1. Background and motivation 1
1.2. Introduction of Zigbee band 1
1.3. Introduction of K band 2
1.4. Introduction of FMCW Radar System 2
1.5. Introduction of Vehicle Safety System 2
1.6. Thesis organization 3
Chapter 2 Introduction of Receiver 5
2.1. Introduction the basic parameters of Low Noise Amplifier (LNA) 5
2.1.1. Scattering parameters 6
2.1.2. Noise figure 7
2.1.3. Linearity 8
2.1.4. Stability 10
2.2. Introduction to low noise amplifier Architectures 11
2.2.1. The cascode structure LNA with source degeneration inductance 11
2.2.2. The feedback structure of LNA 13
2.3. Introduction the CMOS Mixer 13
2.3.1. Passive Mixer 15
2.3.2. Active Mixer 15
2.3.3. Parameters of Mixer 21
2.4. In consideration of system level 22
2.5. Literature review 23
2.5.1. A concurrent dual-band 2.4/5.2 GHz low noise Amplifier using gain enhanced techniques [4] 23
2.5.2. A 24GHz down-conversion Mixer with low noise and high gain [6] 24
2.5.3. A wideband CMOS LNA-Mixer for cognitive radio receiver [8] 24
2.6. Design flow 25
Chapter 3 The Proposed LNA 27
3.1. A 0.5V 2.4GHz low voltage low noise amplifiers for ZigBee system application 27
3.2. Input impedance matching 27
3.3. Body bias technology 29
3.4. Consideration of the circuit design 29
3.5. Simulation results 30
3.6. Measured results 37
3.7. Summary and discussion 41
Chapter 4 The Proposed LNA+Mixer 43
4.1. A high gain and low noise figure receiver for FMCW radar application 43
4.2. Design of LNA 44
4.3. Design of Mixer 47
4.3.1. Current bleeding 47
4.3.2. Active load and output buffer 48
4.4. The complete architecture of LNA-MIXER 49
4.5. Simulation results 50
4.6. Measured results 57
4.7. Summary and discussion 60
Chapter 5 Conclusion and Future Work 63
5.1. Conclusion 63
5.2. Future work 63
Reference 65
[1] Aaron V. Do, Chrin Chye Boon, Manh Anh Do, Kiat Seng Yeo and Alper Cabuk., “A subthreshold LNA optimized for Ultra low power applications in ISM band, ”IEEE trans. Microwave Theory Tech., vo1.56, pp.286-292, Feb. 2008.
[2] 陳玉燕,應用於無線通訊系統之射頻前端子電路設計,國立東華大學電機工程研究所博士論文,民國一百零一年。
[3] 魏宏哲,泛用於WiMax系統之寬頻混頻器的設計與分析,國立東華大學電機工程研究所博士論文,民國九十八年。
[4] A. Mazzanti, M. Sosio, M. Repossi, and F. Svelto, “A 24 GHz subharmonic
direct conversion receiver in 65 nm CMOS,” IEEE Trans.Circuits Syst. I., vol. 58, no. 1, pp. 88–97, Jan. 2011.
[5] V. K. Dao, “Dual-band LNA for 2.4/5.2GHz applications,” in Proc. Asia-Pacific Microwave Conference., pp12-15, Dec. 2006.
[6] T.N Tran, Chirn Chye Boon and Manh Anh Do, “A 2.4 GHz ultra-low power
high gain LNA utilizing π-match and capacitive feedback inputnetwork,” IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS)., pp7-10, Aug. 2011.
[7] Maja Vidojkovic, “A 2.4 GHz Single-Chip Transceiver for Healthcare Applications,” IEEE Transactions on Biomedical Circuits and Systems., vol. 5, no. 6, Dec. 2011.
[8] Mohammad Javad Zavarei, Ehsan Kargaran, and Hooman Nabovati,“Design of High Gain CMOS LNA with Improved Linearity Using Modified Derivative Superposition,” IEEE International Conference on Electronics, Circuits and Systems., pp.322 – 325, Dec. 2011.
[9] Mu-Tsung Lai and Hen-Wai Tsao, “Ultra-Low-Power Cascaded CMOS LNA With Positive Feedback and Bias Optimization,” IEEE Transactions on Microwave Theory and Techniques., vol. 61, pp.1934 – 1945, May. 2013.
[10] Hasmukh P Koringa, “Design and Optimization of Narrow Band Low Noise Amplifier using 0.18mm CMOS,” Communication Networks (ICCN), 2015 International Conference on., pp.19-21, Nov. 2010.
[11] R. M. Kodkani and L. E. Larson, “A 24-GHz CMOS passive subharmonic
mixer/downconverter for zero-IF applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1247–1256, May 2008.
[12] V. Issakov, D. Siprak, M. Tiebout, A. Thiede, W. Simburger, and L.Maurer, “Comparison of 24 GHz receiver front-ends using active and passive mixers in CMOS,” IET Circuits Devices Syst., vol. 3, no. 6, pp.340–349, Dec. 2009.
[13] 楊振昌,應用於無線通訊系統之雜訊抵銷式低雜訊放大器設計,國立東華大學電機工程研究所碩士論文,民國一百年。
[14] Hooman Darabi and Asad A. Abidi, “Noise in RF-CMOS Mixers: A Simple Physical Model” IEEE Journal of Solid-State Circuits., vol.35, pp15-25, Jan. 2000.
[15] Yu-Jun Hong, San-Fu Wang, Po-Tsung Chen, Yuh-Shyan Hwang and Jiann-Jong Chen, “A Concurrent Dual-Band 2.4/5.2 GHz Low-Noise Amplifier Using Gain Enhanced Techniques,” Electromagnetic Compatibility (APEMC), 2015 Asia-Pacific Symposium on.,pp26-29, May. 2015.
[16] Viswanathan Subramanian, Tao Zhang and Georg Boeck, “Low Noise 24 GHz CMOS Receiver for FMCW Based Wireless Local Positioning” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, Vol.21, pp553-555, Oct. 2011.
[17] Yu-Hsin Chang, Chia-Yang Huang, and Yen-Chung Chiang, “A 24GHz Down-Conversion Mixer with Low Noise and High Gain” Microwave Integrated Circuits Conference (EuMIC), 2012 7th European, pp29-30, Oct. 2012.
[18] 余紹萍,應用於24GHz雷達系統之低功耗壓控振盪器和降頻混頻器電路設計,國立成功大學電機工程研究所碩士論文,民國一百零二年。
[19] Shuenn-Yuh Lee, Liang-Hung Wang, Tsung-Yen Chen , and Chih-Tao Yu, “A Low-Power RF Front-End with Merged LNA, Differential Power Splitter, and Quadrature Mixer for IEEE 802.15.4 (ZigBee) Applications” Circuits and Systems (ISCAS), 2012 IEEE International Symposium on., pp20-23, May. 2012.
[20] Nandini Vitee, Harikrishnan Ramiah and Wei-Keat Chong, “A Wideband CMOS LNA-Mixer for Cognitive Radio Receiver” Circuits and Systems (APCCAS), 2014 IEEE Asia Pacific Conference on., pp17-20, Nov. 2014.
[21] Jeng-Han Tsai, Wang-Long Huang, Cheng-Yen Lin, and Ruei-An Chang, “An X-band low-power CMOS low noise amplifier with transformer inter-stage matching networks” European Microwave Integrated Circuit Conference (EuMIC)., pp6-7, Oct. 2014.
[22] G. H. Tan, R. M. Sidek and M.M.Isa, “Design of Ultra-Low Voltage and Low-Power CMOS Current Bleeding Mixer” Circuits and Systems (APCCAS), 2014 IEEE Asia Pacific Conference on., pp17-20, Nov. 2014.
[23] Nathan M. Neihart, Jeremy Brown, Xiaohua Yu., “A Dual-Band 2.45/6 GHz CMOS LNA Utilizing a Dual-Resonant Transformer-Based Matching Network,” IEEE Transactions on Circuits and Systems.,vol.59,pp1743-1751, Aug. 2012.
[24] X. Guan and A. Hajimiri, “A 24-GHz CMOS front-end,” IEEE J. Solid State Circuits., vol. 39, no. 2, pp. 368–373, Feb. 2004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *