帳號:guest(3.17.162.15)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:黃士銘
作者(英文):Shin-Ming Huang
論文名稱:採用多閘極抑制三階諧波技術之X頻帶高線性混頻器
論文名稱(英文):An X-band High Linearity Mixer Using Multiple-gates for the Third-Order Harmonic Suppression
指導教授:翁若敏
指導教授(英文):Ro-Min Weng
口試委員:魏宏哲
郭岳芳
口試委員(英文):Hung-Che Wei
Yue-Fang Kuo
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610523007
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:55
關鍵詞:多閘極電流注入三接諧波項線性度
關鍵詞(英文):multiple-gatescurrent bleedingthird-orderlinearity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏收藏:0
本論文「採用多閘極抑制三階諧波技術之X頻帶高線性混頻器」進行設計與研究。提出一個應用於X頻帶的高線性混頻器。傳統式吉伯特混頻器利用差動訊號來解決從LO饋入的電流,加上多閘極電晶體抑制輸入三階諧波項及電流注入來降低開關級的電流並提高增益,從上述三種方法,可以增加混頻器線信度來確保信號不會失真。
晶片採用國研院台灣晶片研究中心所提供tsmc 180um 1P6M CMOS製程進行模擬驗證和實作,晶片使用on wafer 方式量測,本論文提出應用於衛星系統X頻帶之高線性混頻器之特性如下:操作電壓為1.2V,總功率消耗為4.61mW,線性度為18.1dBm,轉換增益1.4dB,最小雜訊指數為19.9dB,輸入反射係數與輸出反射係數皆小於-10dB,晶片面積為1.02*0.769 mm2 。
This thesis is focused on the research of “An X-band High Linearity Mixer Using Multiple-gates for the Third-Order Harmonic Suppression”. A high linearity mixer is proposed for X band application. The traditional Gilbert cell mixer structure uses differential pair to solve the leakage current from LO port. Then, the multiple-gates structure is used to suppress the input third order signal. The current-bleeding technique is used to reduced the current from the switching stage and increase conversion gain. From the above three methods, the linearity of the proposed mixer can be increased to ensure the output signal will not be distorted.
The proposed high linearity mixer is designed at the X band of the satellite system. The designed chip was fabricated by tsmc 0.18m 1P6M CMOS process technology. The circuit is verified and simulated by using the Advanced Design System, EDA design cloud servers provided by Taiwan Semiconductor Research Institute. Under the supply voltage of 1.2V, circuit achieves the total power consumption of 4.6mW, IIP3 of 18.1 dBm, conversion gain of 1.4 dB, and noise figure of 19.9dB. The chip size is 1.02*0.769 mm2 .
第一章 緒論 1
第二章 混頻器介紹 3
第三章 應用於衛星系統之高線性混頻器使用電流注入技術與複合式電晶體 19
第四章 結論與未來展望 51
[1] B. Razavi, “RF Microelectronics,” Prentice-Hall, 1997
[2] B. Razavi, “Design of Analog CMOS Integrated Circuits,” The McGraw-Hall
Companies, Inc., Chap. 15, 2001
[3] E. G. Njoku, P. Ashcroft and T. K. Chan, “Global Survey and Statistics of Radio
-Frequency Interference in AMSR-E Land Observations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 5, pp. 938-947, May. 2005
[4] T. J. Jackson, R. Bindlish and A. J. Gasiewski, “Polarimetric Scanning Radiometer C-and X-band Microwave Observations During SMEX03,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 11, pp. 2414-2430, Nov. 2005
[5] D. W. Draper, “Radio Frequency Environment for Earth-Observing Passive Micro -wave Imagers,” IEEE Journal of Selected Topic in Applied Earth Observations and Remote Sensing, vol. 11, no. 6, pp. 1913-1922, Nov. 2018
[6] 楊子廷,應用於藍芽與車載系統之高線性度混頻器設計,國立東華大學電機工程研究所碩士論文,7月,2015
[7] 何政杰,應用於車載系統之低功耗高增益混頻器設計,國立東華大學電機工程研究所碩士論文,7月,2017
[8] H. Zijie and K. Mouthaan, “A 1- to 10-GHz RF and Wideband IF Cross- Coupled Gilbert Mixer in 0.13-μm CMOS” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 60, no. 11, pp. 726-760, Nov. 2013
[9] L. Liu, K. Zhang and D. Liu, “Wideband mixer exploiting gm and gm′′ compen-
sation technique” Electronics Letters, vol. 52 no. 24 pp. 2021–2023, Nov. 2016
[10] H. H. Lin, Y. H. Lin and H. Wang, “Using Distributed Derivative Superposition Technique in 0.18-μm CMOS Process” IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 49-51, Jan. 2018
[11] C. L. Wu, C. Yu and K. K. O, “Amplification of Nonlinearity in Multiple Gate Transistor Millimeter Wave Mixer for Improvement of Linearity and Noise Figure,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 5, pp. 310-312, May. 2015
[12] W. H. Chen, G. Liu and B. Zdravko, “A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation,” IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1164-1176, May. 2008
[13] M. Mollaalipour and H. M. Naimi, “An Improved High Linearity Active CMOS Mixer: Design and Volterra Series Analysis,” IEEE Transactions on Circuits and Systems—II: Express, vol. 60, no. 8, pp. 22092-2103, Aug. 2013
[14] M. M. Mohsenpour and C. E. Saavedra, “Method to Improve the Linearity of Active Commutating Mixers Using Dynamic Current Injection” IEEE Transa- ctions on Circuits and Systems—II: Express Briefs, vol. 64, no. 12, pp. 4624-4631, Dec. 2016
[15] J. Y. Lee and T. Y. Yun, “Low-Flicker-Noise and High-Gain Mixer Using a Dynamic Current-Bleeding Technique” IEEE Microwave and Wireless Compon- ents Letters, vol. 27, no. 8, pp. 733-735 Aug. 2017
[16] G. H. Tan, H. Ramiah and P. I. Mak, “A 0.35-V 520-W Current-Bleeding Mixer With Inductive-Gate and Forward-Body Bias, Achieving >13-dB Conversion Gain and >55-dB Port-to-Port Isolation,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 4, pp. 1284-1293, Apr. 2017
[17] S. Kong, C. Y. Kim and S. Hong, “A K-Band UWB Low-Noise CMOS Mixer with Bleeding Path Gm-Boosting Technique,” IEEE Transactions on Circuits and Systems—II: Express, vol. 60, no. 3, pp. 117-121, Mar. 2013
[18] C. J. Lee and C. S. Park, “A D-band Gain-Boosted Current Bleeding Down -Conversion Mixer in 65 nm CMOS for Chip-to-Chip Communication,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 2, pp. 143-145, Feb. 2016
[19] D. Y. Yoon, S. J. Yun and J. Cartwright, “A High Gain Low Noise Mixer With Cross-Coupled Bleeding,” IEEE Microwave and Wireless Components Letters, vol. 62, no. 9, pp. 568-570, Oct. 2011
[20] H. Cruz, H. Y. Huang and S. Y. Lee, “A 1.3 mW Low-IF, Current-Reuse, and Current-Bleeding RF Front-End for the MIVS Band With Sensitivity of -97dBm,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 62, no. 6, pp. 1627-1636, Jun. 2015
[21] X. Yan, L. Yang and H. Zhang “Low-noise and high –gain mixer combing switched-biasing and current-bleeding techniques,” Electronics Letters, vol. 48, no. 23, pp. 1476-1478, Jan. 2012
[22] C. I. Yeh, W. S. Feng and C. Y. Hsu “0.9-10.6 GHz UWB mixer using current bleeding for multiple-band application,” Electronics Letters, vol. 50, no. 3, pp. 186-187, Jan. 2014
[23] D. Bhatt, J. Mukherjee and J. M. Redoute “Low-Power Linear Bulk-Injection Mixer for Wide-Band Applications,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 10, pp. 828-830, Oct. 2016
[24] H. J. Wei, C. Meng and H. I. Chien “Flicker Noise and Power Performance of CMOS Gilbert Mixers Using Static and dynamic Current-Injection Techniques,” Asia-Pacific Microwave Conference, pp. 7-10, Dec. 2010
[25] J. Y. Lee, and T. Y. Yun, “High-Gain Mixer using Cascode Current Bleeding and gm-boosting Techniques” Microwave and Optical Technology Letters, vol. 59, no. 4, pp. 991-991, Feb. 2017
[26] P. Solati and M. Yavari, “A Wide-Band CMOS Active Mixer with Linearity Improvement Technique,” Iranian Conference on Electrical Engineering, pp. 2-4, May. 2017
[27] F. Zhu, W. Hong and J. X. Chen, “A Broadband Low-Power Millimeter-Wave CMOS Down conversion Mixer With Improved Linearity” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 61, no. 3, pp. 138-142, Mar. 2014
[28] C. Chen and J. Wu, “A 1.2-V Self-Reconfigurable Recursive Mixer With Improved IF Linearity in 130-nm CMOS” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 64, no. 1, pp. 36-40, Jan. 2017
[29] J. Y. Lee, J. Y. Park and T. Y. Yun, “Flicker Noise Improved CMOS Mixer Using Feedback Current Bleeding” IEEE Microwave and Wireless Components Letters, vol. 27, no. 8, pp. 730-732, Aug. 2017
[30] M.M.R.Esmael, M. Mobarah and M. A. Y. Abdalla, “9-16 GHz High-Linearity I/Q Active Mixer in 0.13-m CMOS,” National Radio Science Conference, pp. 22-25, Feb. 2016
[31] B. Guo, H. Wang and G. Yang, “A Wideband Merged CMOS Active Mixer Exploiting Noise Cancellation and Linearity Enhancement,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 2084-2091, Apr. 2014
[32] Y. Li, K. Han and C. Dong “A Multi-Band Low-Noise Transmitter with Digital Carrier Leakage Suppression and Linearity Enhancement,” IEEE Transactions on Circuits and systems-I: Regular Papers, vol. 60, no. 5, pp. 828-830, May. 2013
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *